mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
| .. | ||
| rapid_paraformer | ||
| resources | ||
| .gitignore | ||
| README.md | ||
| requirements.txt | ||
Using paraformer with ONNXRuntime
Introduction
- Model comes from speech_paraformer.
Steps:
- Download the whole directory (
funasr/runtime/python/onnxruntime) to the local. - Install the related packages.
pip install requirements.txt - Download the model.
- Download Link
- Put the model into the
resources/models.. ├── demo.py ├── rapid_paraformer │ ├── __init__.py │ ├── kaldifeat │ ├── __pycache__ │ ├── rapid_paraformer.py │ └── utils.py ├── README.md ├── requirements.txt ├── resources │ ├── config.yaml │ └── models │ ├── am.mvn │ ├── model.onnx # Put it here. │ └── token_list.pkl ├── test_onnx.py ├── tests │ ├── __pycache__ │ └── test_infer.py └── test_wavs ├── 0478_00017.wav └── asr_example_zh.wav
- Run the demo.
- Input: wav formt file, support formats:
str, np.ndarray, List[str] - Output:
List[str]: recognition result. - Example:
from rapid_paraformer import RapidParaformer config_path = 'resources/config.yaml' paraformer = RapidParaformer(config_path) wav_path = ['test_wavs/0478_00017.wav'] result = paraformer(wav_path) print(result)
- Input: wav formt file, support formats: