FunASR/funasr/runtime/python/onnxruntime
2023-02-11 15:41:09 +08:00
..
rapid_paraformer Add inference module support for onnxruntime 2023-02-11 15:41:09 +08:00
resources Add inference module support for onnxruntime 2023-02-11 15:41:09 +08:00
.gitignore Add inference module support for onnxruntime 2023-02-11 15:41:09 +08:00
README.md Add inference module support for onnxruntime 2023-02-11 15:41:09 +08:00
requirements.txt Add inference module support for onnxruntime 2023-02-11 15:41:09 +08:00

Using paraformer with ONNXRuntime

Introduction

Steps:

  1. Download the whole directory (funasr/runtime/python/onnxruntime) to the local.
  2. Install the related packages.
    pip install requirements.txt
    
  3. Download the model.
    • Download Link
    • Put the model into the resources/models.
      .
      ├── demo.py
      ├── rapid_paraformer
      │   ├── __init__.py
      │   ├── kaldifeat
      │   ├── __pycache__
      │   ├── rapid_paraformer.py
      │   └── utils.py
      ├── README.md
      ├── requirements.txt
      ├── resources
      │   ├── config.yaml
      │   └── models
      │       ├── am.mvn
      │       ├── model.onnx  # Put it here.
      │       └── token_list.pkl
      ├── test_onnx.py
      ├── tests
      │   ├── __pycache__
      │   └── test_infer.py
      └── test_wavs
          ├── 0478_00017.wav
          └── asr_example_zh.wav
      
  4. Run the demo.
    • Input: wav formt file, support formats: str, np.ndarray, List[str]
    • Output: List[str]: recognition result.
    • Example:
      from rapid_paraformer import RapidParaformer
      
      
      config_path = 'resources/config.yaml'
      paraformer = RapidParaformer(config_path)
      
      wav_path = ['test_wavs/0478_00017.wav']
      
      result = paraformer(wav_path)
      print(result)