mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
194 lines
7.9 KiB
Python
194 lines
7.9 KiB
Python
import logging
|
|
import os
|
|
import shutil
|
|
from multiprocessing import Pool
|
|
|
|
import numpy as np
|
|
import torch.distributed as dist
|
|
import torchaudio
|
|
|
|
|
|
def filter_wav_text(data_dir, dataset):
|
|
wav_file = os.path.join(data_dir, dataset, "wav.scp")
|
|
text_file = os.path.join(data_dir, dataset, "text")
|
|
with open(wav_file) as f_wav, open(text_file) as f_text:
|
|
wav_lines = f_wav.readlines()
|
|
text_lines = f_text.readlines()
|
|
os.rename(wav_file, "{}.bak".format(wav_file))
|
|
os.rename(text_file, "{}.bak".format(text_file))
|
|
wav_dict = {}
|
|
for line in wav_lines:
|
|
parts = line.strip().split()
|
|
if len(parts) < 2:
|
|
continue
|
|
wav_dict[parts[0]] = parts[1]
|
|
text_dict = {}
|
|
for line in text_lines:
|
|
parts = line.strip().split()
|
|
if len(parts) < 2:
|
|
continue
|
|
text_dict[parts[0]] = " ".join(parts[1:])
|
|
filter_count = 0
|
|
with open(wav_file, "w") as f_wav, open(text_file, "w") as f_text:
|
|
for sample_name, wav_path in wav_dict.items():
|
|
if sample_name in text_dict.keys():
|
|
f_wav.write(sample_name + " " + wav_path + "\n")
|
|
f_text.write(sample_name + " " + text_dict[sample_name] + "\n")
|
|
else:
|
|
filter_count += 1
|
|
logging.info("{}/{} samples in {} are filtered because of the mismatch between wav.scp and text".
|
|
format(filter_count, len(wav_lines), dataset))
|
|
|
|
|
|
def wav2num_frame(wav_path, frontend_conf):
|
|
waveform, sampling_rate = torchaudio.load(wav_path)
|
|
n_frames = (waveform.shape[1] * 1000.0) / (sampling_rate * frontend_conf["frame_shift"] * frontend_conf["lfr_n"])
|
|
feature_dim = frontend_conf["n_mels"] * frontend_conf["lfr_m"]
|
|
return n_frames, feature_dim
|
|
|
|
|
|
def calc_shape_core(root_path, args, idx):
|
|
wav_scp_file = os.path.join(root_path, "wav.scp.{}".format(idx))
|
|
shape_file = os.path.join(root_path, "speech_shape.{}".format(idx))
|
|
with open(wav_scp_file) as f:
|
|
lines = f.readlines()
|
|
frontend_conf = args.frontend_conf
|
|
dataset_conf = args.dataset_conf
|
|
speech_length_min = dataset_conf.speech_length_min if hasattr(dataset_conf, "speech_length_min") else -1
|
|
speech_length_max = dataset_conf.speech_length_max if hasattr(dataset_conf, "speech_length_max") else -1
|
|
with open(shape_file, "w") as f:
|
|
for line in lines:
|
|
sample_name, wav_path = line.strip().split()
|
|
n_frames, feature_dim = wav2num_frame(wav_path, frontend_conf)
|
|
write_flag = True
|
|
if n_frames > 0 and speech_length_min > 0:
|
|
write_flag = n_frames >= speech_length_min
|
|
if n_frames > 0 and speech_length_max > 0:
|
|
write_flag = n_frames <= speech_length_max
|
|
if write_flag:
|
|
f.write("{} {},{}\n".format(sample_name, str(int(np.ceil(n_frames))), str(int(feature_dim))))
|
|
f.flush()
|
|
|
|
|
|
def calc_shape(args, dataset, nj=64):
|
|
shape_path = os.path.join(args.data_dir, dataset, "speech_shape")
|
|
if os.path.exists(shape_path):
|
|
logging.info('Shape file for small dataset already exists.')
|
|
return
|
|
|
|
split_shape_path = os.path.join(args.data_dir, dataset, "shape_files")
|
|
if os.path.exists(split_shape_path):
|
|
shutil.rmtree(split_shape_path)
|
|
os.mkdir(split_shape_path)
|
|
|
|
# split
|
|
wav_scp_file = os.path.join(args.data_dir, dataset, "wav.scp")
|
|
with open(wav_scp_file) as f:
|
|
lines = f.readlines()
|
|
num_lines = len(lines)
|
|
num_job_lines = num_lines // nj
|
|
start = 0
|
|
for i in range(nj):
|
|
end = start + num_job_lines
|
|
file = os.path.join(split_shape_path, "wav.scp.{}".format(str(i + 1)))
|
|
with open(file, "w") as f:
|
|
if i == nj - 1:
|
|
f.writelines(lines[start:])
|
|
else:
|
|
f.writelines(lines[start:end])
|
|
start = end
|
|
|
|
p = Pool(nj)
|
|
for i in range(nj):
|
|
p.apply_async(calc_shape_core, args=(split_shape_path, args, str(i + 1)))
|
|
logging.info("Generating shape files, please wait a few minutes...")
|
|
p.close()
|
|
p.join()
|
|
|
|
# combine
|
|
with open(shape_path, "w") as f:
|
|
for i in range(nj):
|
|
job_file = os.path.join(split_shape_path, "speech_shape.{}".format(str(i + 1)))
|
|
with open(job_file) as job_f:
|
|
lines = job_f.readlines()
|
|
f.writelines(lines)
|
|
logging.info('Generating shape files done.')
|
|
|
|
|
|
def generate_data_list(data_dir, dataset, nj=64):
|
|
list_file = os.path.join(data_dir, dataset, "data.list")
|
|
if os.path.exists(list_file):
|
|
logging.info('Data list for large dataset already exists.')
|
|
return
|
|
split_path = os.path.join(data_dir, dataset, "split")
|
|
if os.path.exists(split_path):
|
|
shutil.rmtree(split_path)
|
|
os.mkdir(split_path)
|
|
|
|
with open(os.path.join(data_dir, dataset, "wav.scp")) as f_wav:
|
|
wav_lines = f_wav.readlines()
|
|
with open(os.path.join(data_dir, dataset, "text")) as f_text:
|
|
text_lines = f_text.readlines()
|
|
num_lines = len(wav_lines)
|
|
num_job_lines = num_lines // nj
|
|
start = 0
|
|
for i in range(nj):
|
|
end = start + num_job_lines
|
|
split_path_nj = os.path.join(split_path, str(i + 1))
|
|
os.mkdir(split_path_nj)
|
|
wav_file = os.path.join(split_path_nj, "wav.scp")
|
|
text_file = os.path.join(split_path_nj, "text")
|
|
with open(wav_file, "w") as fw, open(text_file, "w") as ft:
|
|
if i == nj - 1:
|
|
fw.writelines(wav_lines[start:])
|
|
ft.writelines(text_lines[start:])
|
|
else:
|
|
fw.writelines(wav_lines[start:end])
|
|
ft.writelines(text_lines[start:end])
|
|
start = end
|
|
|
|
with open(list_file, "w") as f_data:
|
|
for i in range(nj):
|
|
wav_path = os.path.join(split_path, str(i + 1), "wav.scp")
|
|
text_path = os.path.join(split_path, str(i + 1), "text")
|
|
f_data.write(wav_path + " " + text_path + "\n")
|
|
|
|
|
|
def prepare_data(args, distributed_option):
|
|
distributed = distributed_option.distributed
|
|
if not distributed or distributed_option.dist_rank == 0:
|
|
filter_wav_text(args.data_dir, args.train_set)
|
|
filter_wav_text(args.data_dir, args.valid_set)
|
|
|
|
if args.dataset_type == "small":
|
|
calc_shape(args, args.train_set)
|
|
calc_shape(args, args.valid_set)
|
|
|
|
if args.dataset_type == "large":
|
|
generate_data_list(args.data_dir, args.train_set)
|
|
generate_data_list(args.data_dir, args.valid_set)
|
|
|
|
if args.dataset_type == "small":
|
|
args.train_shape_file = [os.path.join(args.data_dir, args.train_set, "speech_shape")]
|
|
args.valid_shape_file = [os.path.join(args.data_dir, args.valid_set, "speech_shape")]
|
|
data_names = args.dataset_conf.get("data_names", "speech,text").split(",")
|
|
data_types = args.dataset_conf.get("data_types", "sound,text").split(",")
|
|
args.train_data_path_and_name_and_type = [
|
|
["{}/{}/wav.scp".format(args.data_dir, args.train_set), data_names[0], data_types[0]],
|
|
["{}/{}/text".format(args.data_dir, args.train_set), data_names[1], data_types[1]]
|
|
]
|
|
args.valid_data_path_and_name_and_type = [
|
|
["{}/{}/wav.scp".format(args.data_dir, args.valid_set), data_names[0], data_types[0]],
|
|
["{}/{}/text".format(args.data_dir, args.valid_set), data_names[1], data_types[1]]
|
|
]
|
|
if args.embed_path is not None:
|
|
args.train_data_path_and_name_and_type[0].append(
|
|
"{}/embed/kaldi_ark".format(os.path.join(args.embed_path, args.train_set, "embeds.scp")))
|
|
args.valid_data_path_and_name_and_type[0].append(
|
|
"{}/embed/kaldi_ark".format(os.path.join(args.embed_path, args.dev_set, "embeds.scp")))
|
|
else:
|
|
args.train_data_file = os.path.join(args.data_dir, args.train_set, "data.list")
|
|
args.valid_data_file = os.path.join(args.data_dir, args.valid_set, "data.list")
|
|
if distributed:
|
|
dist.barrier()
|