mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
262 lines
11 KiB
Python
262 lines
11 KiB
Python
import logging
|
|
import numpy as np
|
|
import soundfile
|
|
import kaldiio
|
|
from funasr.utils.job_runner import MultiProcessRunnerV3
|
|
from funasr.utils.misc import load_scp_as_list, load_scp_as_dict
|
|
import os
|
|
import argparse
|
|
from collections import OrderedDict
|
|
import random
|
|
from typing import List, Dict
|
|
from copy import deepcopy
|
|
import json
|
|
logging.basicConfig(
|
|
level="INFO",
|
|
format=f"[{os.uname()[1].split('.')[0]}]"
|
|
f" %(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
|
)
|
|
|
|
|
|
class MyRunner(MultiProcessRunnerV3):
|
|
|
|
def prepare(self, parser: argparse.ArgumentParser):
|
|
parser.add_argument("--label_scp", type=str, required=True)
|
|
parser.add_argument("--wav_scp", type=str, required=True)
|
|
parser.add_argument("--utt2spk", type=str, required=True)
|
|
parser.add_argument("--spk2meeting", type=str, required=True)
|
|
parser.add_argument("--utt2xvec", type=str, required=True)
|
|
parser.add_argument("--out_dir", type=str, required=True)
|
|
parser.add_argument("--chunk_size", type=float, default=16)
|
|
parser.add_argument("--chunk_shift", type=float, default=4)
|
|
parser.add_argument("--frame_shift", type=float, default=0.01)
|
|
parser.add_argument("--embedding_dim", type=int, default=None)
|
|
parser.add_argument("--average_emb_num", type=int, default=0)
|
|
parser.add_argument("--subset", type=int, default=0)
|
|
parser.add_argument("--data_json", type=str, default=None)
|
|
parser.add_argument("--seed", type=int, default=1234)
|
|
parser.add_argument("--log_interval", type=int, default=100)
|
|
args = parser.parse_args()
|
|
random.seed(args.seed)
|
|
np.random.seed(args.seed)
|
|
|
|
logging.info("Loading data...")
|
|
if not os.path.exists(args.data_json):
|
|
label_list = load_scp_as_list(args.label_scp)
|
|
wav_scp = load_scp_as_dict(args.wav_scp)
|
|
utt2spk = load_scp_as_dict(args.utt2spk)
|
|
utt2xvec = load_scp_as_dict(args.utt2xvec)
|
|
spk2meeting = load_scp_as_dict(args.spk2meeting)
|
|
|
|
meeting2spks = OrderedDict()
|
|
for spk, meeting in spk2meeting.items():
|
|
if meeting not in meeting2spks:
|
|
meeting2spks[meeting] = []
|
|
meeting2spks[meeting].append(spk)
|
|
|
|
spk2utts = OrderedDict()
|
|
for utt, spk in utt2spk.items():
|
|
if spk not in spk2utts:
|
|
spk2utts[spk] = []
|
|
spk2utts[spk].append(utt)
|
|
|
|
os.makedirs(os.path.dirname(args.data_json), exist_ok=True)
|
|
logging.info("Dump data...")
|
|
json.dump({
|
|
"label_list": label_list, "wav_scp": wav_scp, "utt2xvec": utt2xvec,
|
|
"spk2utts": spk2utts, "meeting2spks": meeting2spks
|
|
}, open(args.data_json, "wt", encoding="utf-8"), ensure_ascii=False, indent=4)
|
|
else:
|
|
data_dict = json.load(open(args.data_json, "rt", encoding="utf-8"))
|
|
label_list = data_dict["label_list"]
|
|
wav_scp = data_dict["wav_scp"]
|
|
utt2xvec = data_dict["utt2xvec"]
|
|
spk2utts = data_dict["spk2utts"]
|
|
meeting2spks = data_dict["meeting2spks"]
|
|
|
|
if not os.path.exists(args.out_dir):
|
|
os.makedirs(args.out_dir)
|
|
|
|
args.chunk_size = int(args.chunk_size / args.frame_shift)
|
|
args.chunk_shift = int(args.chunk_shift / args.frame_shift)
|
|
|
|
if args.embedding_dim is None:
|
|
args.embedding_dim = kaldiio.load_mat(next(iter(utt2xvec.values()))).shape[1]
|
|
logging.info("Embedding dim is detected as {}.".format(args.embedding_dim))
|
|
|
|
logging.info("Number utt: {}, Number speaker: {}, Number meetings: {}".format(
|
|
len(wav_scp), len(spk2utts), len(meeting2spks)
|
|
))
|
|
return label_list, (wav_scp, utt2xvec, spk2utts, meeting2spks), args
|
|
|
|
def post(self, results_list, args):
|
|
logging.info("[main]: Got {} chunks.".format(sum(results_list)))
|
|
|
|
|
|
def simu_wav_chunk(spk, spk2utts, wav_scp, sample_length):
|
|
utt_list = spk2utts[spk]
|
|
wav_list = []
|
|
cur_length = 0
|
|
while cur_length < sample_length:
|
|
uttid = random.choice(utt_list)
|
|
wav, fs = soundfile.read(wav_scp[uttid], dtype='float32')
|
|
wav_list.append(wav)
|
|
cur_length += len(wav)
|
|
concat_wav = np.concatenate(wav_list, axis=0)
|
|
start = random.randint(0, len(concat_wav) - sample_length)
|
|
return concat_wav[start: start+sample_length]
|
|
|
|
|
|
def calculate_embedding(spk, spk2utts, utt2xvec, embedding_dim, average_emb_num):
|
|
# process for dummy speaker
|
|
if spk == "None":
|
|
return np.zeros((1, embedding_dim), dtype=np.float32)
|
|
|
|
# calculate averaged speaker embeddings
|
|
utt_list = spk2utts[spk]
|
|
if average_emb_num == 0 or average_emb_num > len(utt_list):
|
|
xvec_list = [kaldiio.load_mat(utt2xvec[utt]) for utt in utt_list]
|
|
else:
|
|
xvec_list = [kaldiio.load_mat(utt2xvec[utt]) for utt in random.sample(utt_list, average_emb_num)]
|
|
xvec = np.concatenate(xvec_list, axis=0)
|
|
xvec = xvec / np.linalg.norm(xvec, axis=-1, keepdims=True)
|
|
xvec = np.mean(xvec, axis=0)
|
|
|
|
return xvec
|
|
|
|
|
|
def simu_chunk(
|
|
frame_label: np.ndarray,
|
|
sample_label: np.ndarray,
|
|
wav_scp: Dict[str, str],
|
|
utt2xvec: Dict[str, str],
|
|
spk2utts: Dict[str, List[str]],
|
|
meeting2spks: Dict[str, List[str]],
|
|
all_speaker_list: List[str],
|
|
meeting_list: List[str],
|
|
embedding_dim: int,
|
|
average_emb_num: int,
|
|
):
|
|
frame_length, max_spk_num = frame_label.shape
|
|
sample_length = sample_label.shape[0]
|
|
positive_speaker_num = int(np.sum(frame_label.sum(axis=0) > 0))
|
|
pos_speaker_list = deepcopy(meeting2spks[random.choice(meeting_list)])
|
|
|
|
# get positive speakers
|
|
if len(pos_speaker_list) >= positive_speaker_num:
|
|
pos_speaker_list = random.sample(pos_speaker_list, positive_speaker_num)
|
|
else:
|
|
while len(pos_speaker_list) < positive_speaker_num:
|
|
_spk = random.choice(all_speaker_list)
|
|
if _spk not in pos_speaker_list:
|
|
pos_speaker_list.append(_spk)
|
|
|
|
# get negative speakers
|
|
negative_speaker_num = random.randint(0, max_spk_num - positive_speaker_num)
|
|
neg_speaker_list = []
|
|
while len(neg_speaker_list) < negative_speaker_num:
|
|
_spk = random.choice(all_speaker_list)
|
|
if _spk not in pos_speaker_list and _spk not in neg_speaker_list:
|
|
neg_speaker_list.append(_spk)
|
|
neg_speaker_list.extend(["None"] * (max_spk_num - positive_speaker_num - negative_speaker_num))
|
|
|
|
random.shuffle(pos_speaker_list)
|
|
random.shuffle(neg_speaker_list)
|
|
seperated_wav = np.zeros(sample_label.shape, dtype=np.float32)
|
|
this_spk_list = []
|
|
for idx, frame_num in enumerate(frame_label.sum(axis=0)):
|
|
if frame_num > 0:
|
|
spk = pos_speaker_list.pop(0)
|
|
this_spk_list.append(spk)
|
|
simu_spk_wav = simu_wav_chunk(spk, spk2utts, wav_scp, sample_length)
|
|
seperated_wav[:, idx] = simu_spk_wav
|
|
else:
|
|
spk = neg_speaker_list.pop(0)
|
|
this_spk_list.append(spk)
|
|
|
|
# calculate mixed wav
|
|
mixed_wav = np.sum(seperated_wav * sample_label, axis=1)
|
|
|
|
# shuffle the order of speakers
|
|
shuffle_idx = list(range(max_spk_num))
|
|
random.shuffle(shuffle_idx)
|
|
this_spk_list = [this_spk_list[x] for x in shuffle_idx]
|
|
seperated_wav = seperated_wav.transpose()[shuffle_idx].transpose()
|
|
frame_label = frame_label.transpose()[shuffle_idx].transpose()
|
|
|
|
# calculate profile
|
|
profile = [calculate_embedding(spk, spk2utts, utt2xvec, embedding_dim, average_emb_num)
|
|
for spk in this_spk_list]
|
|
profile = np.vstack(profile)
|
|
# pse_weights = 2 ** np.arange(max_spk_num)
|
|
# pse_label = np.sum(frame_label * pse_weights[np.newaxis, :], axis=1)
|
|
# pse_label = pse_label.astype(str).tolist()
|
|
|
|
return mixed_wav, seperated_wav, profile, frame_label
|
|
|
|
|
|
def process(task_args):
|
|
task_idx, task_list, (wav_scp, utt2xvec, spk2utts, meeting2spks), args = task_args
|
|
logging.info("{:02d}/{:02d}: Start simulation...".format(task_idx+1, args.nj))
|
|
|
|
out_path = os.path.join(args.out_dir, "wav_mix.{}".format(task_idx+1))
|
|
wav_mix_writer = kaldiio.WriteHelper('ark,scp:{}.ark,{}.scp'.format(out_path, out_path))
|
|
|
|
# out_path = os.path.join(args.out_dir, "wav_sep.{}".format(task_idx + 1))
|
|
# wav_sep_writer = kaldiio.WriteHelper('ark,scp:{}.ark,{}.scp'.format(out_path, out_path))
|
|
|
|
out_path = os.path.join(args.out_dir, "profile.{}".format(task_idx + 1))
|
|
profile_writer = kaldiio.WriteHelper('ark,scp:{}.ark,{}.scp'.format(out_path, out_path))
|
|
|
|
out_path = os.path.join(args.out_dir, "frame_label.{}".format(task_idx + 1))
|
|
label_writer = kaldiio.WriteHelper('ark,scp:{}.ark,{}.scp'.format(out_path, out_path))
|
|
|
|
speaker_list, meeting_list = list(spk2utts.keys()), list(meeting2spks.keys())
|
|
|
|
labels_list = []
|
|
total_chunks = 0
|
|
for org_mid, label_path in task_list:
|
|
whole_label = kaldiio.load_mat(label_path)
|
|
# random offset to keep diversity
|
|
rand_shift = random.randint(0, args.chunk_shift)
|
|
num_chunk = (whole_label.shape[0] - rand_shift - args.chunk_size) // args.chunk_shift + 1
|
|
labels_list.append((org_mid, whole_label, rand_shift, num_chunk))
|
|
total_chunks += num_chunk
|
|
|
|
idx = 0
|
|
simu_chunk_count = 0
|
|
for org_mid, whole_label, rand_shift, num_chunk in labels_list:
|
|
for i in range(num_chunk):
|
|
idx = idx + 1
|
|
st = i * args.chunk_shift + rand_shift
|
|
ed = i * args.chunk_shift + args.chunk_size + rand_shift
|
|
utt_id = "subset{}_part{}_{}_{:06d}_{:06d}".format(
|
|
args.subset + 1, task_idx + 1, org_mid, st, ed
|
|
)
|
|
frame_label = whole_label[st: ed, :]
|
|
sample_label = frame_label.repeat(int(args.sr * args.frame_shift), axis=0)
|
|
mix_wav, seg_wav, profile, frame_label = simu_chunk(
|
|
frame_label, sample_label, wav_scp, utt2xvec, spk2utts, meeting2spks,
|
|
speaker_list, meeting_list, args.embedding_dim, args.average_emb_num
|
|
)
|
|
wav_mix_writer(utt_id, mix_wav)
|
|
# wav_sep_writer(utt_id, seg_wav)
|
|
profile_writer(utt_id, profile)
|
|
label_writer(utt_id, frame_label)
|
|
|
|
simu_chunk_count += 1
|
|
if simu_chunk_count % args.log_interval == 0:
|
|
logging.info("{:02d}/{:02d}: Complete {}/{} simulation, {}.".format(
|
|
task_idx + 1, args.nj, simu_chunk_count, total_chunks, utt_id))
|
|
wav_mix_writer.close()
|
|
# wav_sep_writer.close()
|
|
profile_writer.close()
|
|
label_writer.close()
|
|
logging.info("[{}/{}]: Simulate {} chunks.".format(task_idx+1, args.nj, simu_chunk_count))
|
|
return simu_chunk_count
|
|
|
|
|
|
if __name__ == '__main__':
|
|
my_runner = MyRunner(process)
|
|
my_runner.run()
|