mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
* multi tokenizer * support fsmn_kws, fsmn_kws_mt, sanm_kws, sanm_kws_streaming training * kws --------- Co-authored-by: pengteng.spt <pengteng.spt@alibaba-inc.com>
99 lines
2.9 KiB
Python
99 lines
2.9 KiB
Python
#!/usr/bin/env python3
|
|
# -*- encoding: utf-8 -*-
|
|
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
|
# MIT License (https://opensource.org/licenses/MIT)
|
|
|
|
import types
|
|
import copy
|
|
import torch
|
|
from funasr.register import tables
|
|
|
|
|
|
def export_rebuild_model(model, **kwargs):
|
|
# self.device = kwargs.get("device")
|
|
is_onnx = kwargs.get("type", "onnx") == "onnx"
|
|
encoder_class = tables.encoder_classes.get(kwargs["encoder"] + "Export")
|
|
|
|
if hasattr(model, "ctc"):
|
|
model.encoder = encoder_class(
|
|
model.encoder,
|
|
onnx=is_onnx,
|
|
feats_dim=kwargs.get("input_size", 560),
|
|
ctc_linear=model.ctc.ctc_lo
|
|
)
|
|
else:
|
|
assert False, print(model)
|
|
model.encoder = encoder_class(model.encoder, onnx=is_onnx, feats_dim=kwargs.get("input_size", 560))
|
|
|
|
# from funasr.utils.torch_function import sequence_mask
|
|
# model.make_pad_mask = sequence_mask(max_seq_len=None, flip=False)
|
|
|
|
encoder_model = copy.copy(model)
|
|
|
|
# encoder
|
|
encoder_model.forward = types.MethodType(export_encoder_forward, encoder_model)
|
|
encoder_model.export_dummy_inputs = types.MethodType(export_encoder_dummy_inputs, encoder_model)
|
|
encoder_model.export_input_names = types.MethodType(export_encoder_input_names, encoder_model)
|
|
encoder_model.export_output_names = types.MethodType(export_encoder_output_names, encoder_model)
|
|
encoder_model.export_dynamic_axes = types.MethodType(export_encoder_dynamic_axes, encoder_model)
|
|
encoder_model.export_name = types.MethodType(export_encoder_name, encoder_model)
|
|
|
|
return encoder_model
|
|
|
|
|
|
def export_encoder_forward(
|
|
self,
|
|
speech: torch.Tensor,
|
|
speech_lengths: torch.Tensor,
|
|
):
|
|
# a. To device
|
|
batch = {
|
|
"speech": speech,
|
|
"speech_lengths": speech_lengths,
|
|
"online": True
|
|
}
|
|
# batch = to_device(batch, device=self.device)
|
|
|
|
encoder_out, encoder_out_len = self.encoder(**batch)
|
|
# mask = self.make_pad_mask(encoder_out_len)[:, None, :]
|
|
# alphas, _ = self.predictor.forward_cnn(enc, mask)
|
|
|
|
# return encoder_out, encoder_out_len, alphas
|
|
return encoder_out, encoder_out_len
|
|
|
|
|
|
def export_encoder_dummy_inputs(self):
|
|
speech = torch.randn(2, 30, 280)
|
|
speech_lengths = torch.tensor([6, 30], dtype=torch.int32)
|
|
return (speech, speech_lengths)
|
|
|
|
|
|
def export_encoder_input_names(self):
|
|
return ["speech", "speech_lengths"]
|
|
|
|
|
|
def export_encoder_output_names(self):
|
|
# return ["encoder_out", "encoder_out_len", "alphas"]
|
|
return ["encoder_out", "encoder_out_len"]
|
|
|
|
|
|
def export_encoder_dynamic_axes(self):
|
|
return {
|
|
"speech": {
|
|
0: "batch_size", 1: "feats_length"
|
|
},
|
|
"speech_lengths": {
|
|
0: "batch_size",
|
|
},
|
|
"encoder_out": {
|
|
0: "batch_size", 1: "feats_length"
|
|
},
|
|
"encoder_out_len": {
|
|
0: "batch_size",
|
|
},
|
|
}
|
|
|
|
|
|
def export_encoder_name(self):
|
|
return "encoder.onnx"
|