FunASR/funasr/models/sanm_kws/export_meta.py
zhifu gao 2196844d1d
Dev kws (#2105)
* multi tokenizer

* support fsmn_kws, fsmn_kws_mt, sanm_kws, sanm_kws_streaming training

* kws

---------

Co-authored-by: pengteng.spt <pengteng.spt@alibaba-inc.com>
2024-09-25 15:10:50 +08:00

99 lines
2.9 KiB
Python

#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import types
import copy
import torch
from funasr.register import tables
def export_rebuild_model(model, **kwargs):
# self.device = kwargs.get("device")
is_onnx = kwargs.get("type", "onnx") == "onnx"
encoder_class = tables.encoder_classes.get(kwargs["encoder"] + "Export")
if hasattr(model, "ctc"):
model.encoder = encoder_class(
model.encoder,
onnx=is_onnx,
feats_dim=kwargs.get("input_size", 560),
ctc_linear=model.ctc.ctc_lo
)
else:
assert False, print(model)
model.encoder = encoder_class(model.encoder, onnx=is_onnx, feats_dim=kwargs.get("input_size", 560))
# from funasr.utils.torch_function import sequence_mask
# model.make_pad_mask = sequence_mask(max_seq_len=None, flip=False)
encoder_model = copy.copy(model)
# encoder
encoder_model.forward = types.MethodType(export_encoder_forward, encoder_model)
encoder_model.export_dummy_inputs = types.MethodType(export_encoder_dummy_inputs, encoder_model)
encoder_model.export_input_names = types.MethodType(export_encoder_input_names, encoder_model)
encoder_model.export_output_names = types.MethodType(export_encoder_output_names, encoder_model)
encoder_model.export_dynamic_axes = types.MethodType(export_encoder_dynamic_axes, encoder_model)
encoder_model.export_name = types.MethodType(export_encoder_name, encoder_model)
return encoder_model
def export_encoder_forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
):
# a. To device
batch = {
"speech": speech,
"speech_lengths": speech_lengths,
"online": True
}
# batch = to_device(batch, device=self.device)
encoder_out, encoder_out_len = self.encoder(**batch)
# mask = self.make_pad_mask(encoder_out_len)[:, None, :]
# alphas, _ = self.predictor.forward_cnn(enc, mask)
# return encoder_out, encoder_out_len, alphas
return encoder_out, encoder_out_len
def export_encoder_dummy_inputs(self):
speech = torch.randn(2, 30, 280)
speech_lengths = torch.tensor([6, 30], dtype=torch.int32)
return (speech, speech_lengths)
def export_encoder_input_names(self):
return ["speech", "speech_lengths"]
def export_encoder_output_names(self):
# return ["encoder_out", "encoder_out_len", "alphas"]
return ["encoder_out", "encoder_out_len"]
def export_encoder_dynamic_axes(self):
return {
"speech": {
0: "batch_size", 1: "feats_length"
},
"speech_lengths": {
0: "batch_size",
},
"encoder_out": {
0: "batch_size", 1: "feats_length"
},
"encoder_out_len": {
0: "batch_size",
},
}
def export_encoder_name(self):
return "encoder.onnx"