mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
263 lines
8.9 KiB
Python
263 lines
8.9 KiB
Python
import logging
|
|
from typing import Union, Dict, List, Tuple, Optional
|
|
|
|
import time
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from funasr.models.ctc.ctc import CTC
|
|
from funasr.train_utils.device_funcs import force_gatherable
|
|
from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
|
|
from funasr.utils import postprocess_utils
|
|
from funasr.utils.datadir_writer import DatadirWriter
|
|
from funasr.register import tables
|
|
from funasr.models.paraformer.search import Hypothesis
|
|
|
|
|
|
@tables.register("model_classes", "CTC")
|
|
class Transformer(nn.Module):
|
|
"""CTC-attention hybrid Encoder-Decoder model"""
|
|
|
|
def __init__(
|
|
self,
|
|
specaug: str = None,
|
|
specaug_conf: dict = None,
|
|
normalize: str = None,
|
|
normalize_conf: dict = None,
|
|
encoder: str = None,
|
|
encoder_conf: dict = None,
|
|
ctc_conf: dict = None,
|
|
input_size: int = 80,
|
|
vocab_size: int = -1,
|
|
ignore_id: int = -1,
|
|
blank_id: int = 0,
|
|
sos: int = 1,
|
|
eos: int = 2,
|
|
length_normalized_loss: bool = False,
|
|
**kwargs,
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
if specaug is not None:
|
|
specaug_class = tables.specaug_classes.get(specaug)
|
|
specaug = specaug_class(**specaug_conf)
|
|
if normalize is not None:
|
|
normalize_class = tables.normalize_classes.get(normalize)
|
|
normalize = normalize_class(**normalize_conf)
|
|
encoder_class = tables.encoder_classes.get(encoder)
|
|
encoder = encoder_class(input_size=input_size, **encoder_conf)
|
|
encoder_output_size = encoder.output_size()
|
|
|
|
if ctc_conf is None:
|
|
ctc_conf = {}
|
|
ctc = CTC(odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf)
|
|
|
|
self.blank_id = blank_id
|
|
self.sos = sos if sos is not None else vocab_size - 1
|
|
self.eos = eos if eos is not None else vocab_size - 1
|
|
self.vocab_size = vocab_size
|
|
self.ignore_id = ignore_id
|
|
self.specaug = specaug
|
|
self.normalize = normalize
|
|
self.encoder = encoder
|
|
self.error_calculator = None
|
|
|
|
self.ctc = ctc
|
|
|
|
self.length_normalized_loss = length_normalized_loss
|
|
|
|
def forward(
|
|
self,
|
|
speech: torch.Tensor,
|
|
speech_lengths: torch.Tensor,
|
|
text: torch.Tensor,
|
|
text_lengths: torch.Tensor,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
|
"""Encoder + Decoder + Calc loss
|
|
Args:
|
|
speech: (Batch, Length, ...)
|
|
speech_lengths: (Batch, )
|
|
text: (Batch, Length)
|
|
text_lengths: (Batch,)
|
|
"""
|
|
# import pdb;
|
|
# pdb.set_trace()
|
|
if len(text_lengths.size()) > 1:
|
|
text_lengths = text_lengths[:, 0]
|
|
if len(speech_lengths.size()) > 1:
|
|
speech_lengths = speech_lengths[:, 0]
|
|
|
|
batch_size = speech.shape[0]
|
|
|
|
# 1. Encoder
|
|
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
|
|
|
loss_ctc, cer_ctc = None, None
|
|
stats = dict()
|
|
|
|
loss_ctc, cer_ctc = self._calc_ctc_loss(
|
|
encoder_out, encoder_out_lens, text, text_lengths
|
|
)
|
|
|
|
loss = loss_ctc
|
|
|
|
# Collect total loss stats
|
|
stats["loss"] = torch.clone(loss.detach())
|
|
|
|
# force_gatherable: to-device and to-tensor if scalar for DataParallel
|
|
if self.length_normalized_loss:
|
|
batch_size = int((text_lengths + 1).sum())
|
|
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
|
|
return loss, stats, weight
|
|
|
|
def encode(
|
|
self,
|
|
speech: torch.Tensor,
|
|
speech_lengths: torch.Tensor,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Frontend + Encoder. Note that this method is used by asr_inference.py
|
|
Args:
|
|
speech: (Batch, Length, ...)
|
|
speech_lengths: (Batch, )
|
|
ind: int
|
|
"""
|
|
|
|
# Data augmentation
|
|
if self.specaug is not None and self.training:
|
|
speech, speech_lengths = self.specaug(speech, speech_lengths)
|
|
|
|
# Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
|
|
if self.normalize is not None:
|
|
speech, speech_lengths = self.normalize(speech, speech_lengths)
|
|
|
|
# Forward encoder
|
|
# feats: (Batch, Length, Dim)
|
|
# -> encoder_out: (Batch, Length2, Dim2)
|
|
encoder_out, encoder_out_lens = self.encoder(speech, speech_lengths)
|
|
|
|
return encoder_out, encoder_out_lens
|
|
|
|
|
|
def _calc_ctc_loss(
|
|
self,
|
|
encoder_out: torch.Tensor,
|
|
encoder_out_lens: torch.Tensor,
|
|
ys_pad: torch.Tensor,
|
|
ys_pad_lens: torch.Tensor,
|
|
):
|
|
# Calc CTC loss
|
|
loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)
|
|
|
|
# Calc CER using CTC
|
|
cer_ctc = None
|
|
if not self.training and self.error_calculator is not None:
|
|
ys_hat = self.ctc.argmax(encoder_out).data
|
|
cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True)
|
|
return loss_ctc, cer_ctc
|
|
|
|
|
|
def inference(
|
|
self,
|
|
data_in,
|
|
data_lengths=None,
|
|
key: list = None,
|
|
tokenizer=None,
|
|
frontend=None,
|
|
**kwargs,
|
|
):
|
|
|
|
if kwargs.get("batch_size", 1) > 1:
|
|
raise NotImplementedError("batch decoding is not implemented")
|
|
|
|
meta_data = {}
|
|
if (
|
|
isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank"
|
|
): # fbank
|
|
speech, speech_lengths = data_in, data_lengths
|
|
if len(speech.shape) < 3:
|
|
speech = speech[None, :, :]
|
|
if speech_lengths is None:
|
|
speech_lengths = speech.shape[1]
|
|
else:
|
|
# extract fbank feats
|
|
time1 = time.perf_counter()
|
|
audio_sample_list = load_audio_text_image_video(
|
|
data_in,
|
|
fs=frontend.fs,
|
|
audio_fs=kwargs.get("fs", 16000),
|
|
data_type=kwargs.get("data_type", "sound"),
|
|
tokenizer=tokenizer,
|
|
)
|
|
time2 = time.perf_counter()
|
|
meta_data["load_data"] = f"{time2 - time1:0.3f}"
|
|
speech, speech_lengths = extract_fbank(
|
|
audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend
|
|
)
|
|
time3 = time.perf_counter()
|
|
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
|
|
meta_data["batch_data_time"] = (
|
|
speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
|
|
)
|
|
|
|
speech = speech.to(device=kwargs["device"])
|
|
speech_lengths = speech_lengths.to(device=kwargs["device"])
|
|
# Encoder
|
|
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
|
if isinstance(encoder_out, tuple):
|
|
encoder_out = encoder_out[0]
|
|
|
|
# c. Passed the encoder result and the beam search
|
|
ctc_logits = self.ctc.log_softmax(encoder_out)
|
|
|
|
results = []
|
|
b, n, d = encoder_out.size()
|
|
if isinstance(key[0], (list, tuple)):
|
|
key = key[0]
|
|
if len(key) < b:
|
|
key = key * b
|
|
for i in range(b):
|
|
x = ctc_logits[i, :encoder_out_lens[i], :]
|
|
yseq = x.argmax(dim=-1)
|
|
yseq = torch.unique_consecutive(yseq, dim=-1)
|
|
yseq = torch.tensor([self.sos] + yseq.tolist() + [self.eos], device=yseq.device)
|
|
nbest_hyps = [Hypothesis(yseq=yseq)]
|
|
|
|
for nbest_idx, hyp in enumerate(nbest_hyps):
|
|
ibest_writer = None
|
|
if kwargs.get("output_dir") is not None:
|
|
if not hasattr(self, "writer"):
|
|
self.writer = DatadirWriter(kwargs.get("output_dir"))
|
|
ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"]
|
|
|
|
# remove sos/eos and get results
|
|
last_pos = -1
|
|
if isinstance(hyp.yseq, list):
|
|
token_int = hyp.yseq[1:last_pos]
|
|
else:
|
|
token_int = hyp.yseq[1:last_pos].tolist()
|
|
|
|
# remove blank symbol id, which is assumed to be 0
|
|
token_int = list(
|
|
filter(
|
|
lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int
|
|
)
|
|
)
|
|
|
|
# Change integer-ids to tokens
|
|
token = tokenizer.ids2tokens(token_int)
|
|
text = tokenizer.tokens2text(token)
|
|
|
|
text_postprocessed, _ = postprocess_utils.sentence_postprocess(token)
|
|
result_i = {"key": key[i], "token": token, "text": text_postprocessed}
|
|
results.append(result_i)
|
|
|
|
if ibest_writer is not None:
|
|
ibest_writer["token"][key[i]] = " ".join(token)
|
|
ibest_writer["text"][key[i]] = text_postprocessed
|
|
|
|
return results, meta_data
|
|
|