FunASR/funasr/datasets/dataset_jsonl.py
2023-11-21 22:36:52 +08:00

44 lines
1.2 KiB
Python

import torch
import json
import torch.distributed as dist
class AudioDatasetJsonl(torch.utils.data.Dataset):
def __init__(self, path, data_parallel_rank=0, data_parallel_size=1):
super().__init__()
data_parallel_size = dist.get_world_size()
contents = []
with open(path, encoding='utf-8') as fin:
for line in fin:
data = json.loads(line.strip())
if "text" in data: # for sft
self.contents.append(data['text'])
if "source" in data: # for speech lab pretrain
prompt = data["prompt"]
source = data["source"]
target = data["target"]
source_len = data["source_len"]
target_len = data["target_len"]
contents.append({"source": source,
"prompt": prompt,
"target": target,
"source_len": source_len,
"target_len": target_len,
}
)
self.contents = []
total_num = len(contents)
num_per_rank = total_num // data_parallel_size
rank = dist.get_rank()
# import ipdb; ipdb.set_trace()
self.contents = contents[rank * num_per_rank:(rank + 1) * num_per_rank]
def __len__(self):
return len(self.contents)
def __getitem__(self, index):
return self.contents[index]