mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
158 lines
5.1 KiB
Python
Executable File
158 lines
5.1 KiB
Python
Executable File
import os
|
|
import numpy as np
|
|
import sys
|
|
|
|
def compute_wer(ref_file,
|
|
hyp_file,
|
|
cer_detail_file):
|
|
rst = {
|
|
'Wrd': 0,
|
|
'Corr': 0,
|
|
'Ins': 0,
|
|
'Del': 0,
|
|
'Sub': 0,
|
|
'Snt': 0,
|
|
'Err': 0.0,
|
|
'S.Err': 0.0,
|
|
'wrong_words': 0,
|
|
'wrong_sentences': 0
|
|
}
|
|
|
|
hyp_dict = {}
|
|
ref_dict = {}
|
|
with open(hyp_file, 'r') as hyp_reader:
|
|
for line in hyp_reader:
|
|
key = line.strip().split()[0]
|
|
value = line.strip().split()[1:]
|
|
hyp_dict[key] = value
|
|
with open(ref_file, 'r') as ref_reader:
|
|
for line in ref_reader:
|
|
key = line.strip().split()[0]
|
|
value = line.strip().split()[1:]
|
|
ref_dict[key] = value
|
|
|
|
cer_detail_writer = open(cer_detail_file, 'w')
|
|
for hyp_key in hyp_dict:
|
|
if hyp_key in ref_dict:
|
|
out_item = compute_wer_by_line(hyp_dict[hyp_key], ref_dict[hyp_key])
|
|
rst['Wrd'] += out_item['nwords']
|
|
rst['Corr'] += out_item['cor']
|
|
rst['wrong_words'] += out_item['wrong']
|
|
rst['Ins'] += out_item['ins']
|
|
rst['Del'] += out_item['del']
|
|
rst['Sub'] += out_item['sub']
|
|
rst['Snt'] += 1
|
|
if out_item['wrong'] > 0:
|
|
rst['wrong_sentences'] += 1
|
|
cer_detail_writer.write(hyp_key + print_cer_detail(out_item) + '\n')
|
|
cer_detail_writer.write("ref:" + '\t' + " ".join(list(map(lambda x: x.lower(), ref_dict[hyp_key]))) + '\n')
|
|
cer_detail_writer.write("hyp:" + '\t' + " ".join(list(map(lambda x: x.lower(), hyp_dict[hyp_key]))) + '\n')
|
|
|
|
if rst['Wrd'] > 0:
|
|
rst['Err'] = round(rst['wrong_words'] * 100 / rst['Wrd'], 2)
|
|
if rst['Snt'] > 0:
|
|
rst['S.Err'] = round(rst['wrong_sentences'] * 100 / rst['Snt'], 2)
|
|
|
|
cer_detail_writer.write('\n')
|
|
cer_detail_writer.write("%WER " + str(rst['Err']) + " [ " + str(rst['wrong_words'])+ " / " + str(rst['Wrd']) +
|
|
", " + str(rst['Ins']) + " ins, " + str(rst['Del']) + " del, " + str(rst['Sub']) + " sub ]" + '\n')
|
|
cer_detail_writer.write("%SER " + str(rst['S.Err']) + " [ " + str(rst['wrong_sentences']) + " / " + str(rst['Snt']) + " ]" + '\n')
|
|
cer_detail_writer.write("Scored " + str(len(hyp_dict)) + " sentences, " + str(len(hyp_dict) - rst['Snt']) + " not present in hyp." + '\n')
|
|
|
|
|
|
def compute_wer_by_line(hyp,
|
|
ref):
|
|
hyp = list(map(lambda x: x.lower(), hyp))
|
|
ref = list(map(lambda x: x.lower(), ref))
|
|
|
|
len_hyp = len(hyp)
|
|
len_ref = len(ref)
|
|
|
|
cost_matrix = np.zeros((len_hyp + 1, len_ref + 1), dtype=np.int16)
|
|
|
|
ops_matrix = np.zeros((len_hyp + 1, len_ref + 1), dtype=np.int8)
|
|
|
|
for i in range(len_hyp + 1):
|
|
cost_matrix[i][0] = i
|
|
for j in range(len_ref + 1):
|
|
cost_matrix[0][j] = j
|
|
|
|
for i in range(1, len_hyp + 1):
|
|
for j in range(1, len_ref + 1):
|
|
if hyp[i - 1] == ref[j - 1]:
|
|
cost_matrix[i][j] = cost_matrix[i - 1][j - 1]
|
|
else:
|
|
substitution = cost_matrix[i - 1][j - 1] + 1
|
|
insertion = cost_matrix[i - 1][j] + 1
|
|
deletion = cost_matrix[i][j - 1] + 1
|
|
|
|
compare_val = [substitution, insertion, deletion]
|
|
|
|
min_val = min(compare_val)
|
|
operation_idx = compare_val.index(min_val) + 1
|
|
cost_matrix[i][j] = min_val
|
|
ops_matrix[i][j] = operation_idx
|
|
|
|
match_idx = []
|
|
i = len_hyp
|
|
j = len_ref
|
|
rst = {
|
|
'nwords': len_ref,
|
|
'cor': 0,
|
|
'wrong': 0,
|
|
'ins': 0,
|
|
'del': 0,
|
|
'sub': 0
|
|
}
|
|
while i >= 0 or j >= 0:
|
|
i_idx = max(0, i)
|
|
j_idx = max(0, j)
|
|
|
|
if ops_matrix[i_idx][j_idx] == 0: # correct
|
|
if i - 1 >= 0 and j - 1 >= 0:
|
|
match_idx.append((j - 1, i - 1))
|
|
rst['cor'] += 1
|
|
|
|
i -= 1
|
|
j -= 1
|
|
|
|
elif ops_matrix[i_idx][j_idx] == 2: # insert
|
|
i -= 1
|
|
rst['ins'] += 1
|
|
|
|
elif ops_matrix[i_idx][j_idx] == 3: # delete
|
|
j -= 1
|
|
rst['del'] += 1
|
|
|
|
elif ops_matrix[i_idx][j_idx] == 1: # substitute
|
|
i -= 1
|
|
j -= 1
|
|
rst['sub'] += 1
|
|
|
|
if i < 0 and j >= 0:
|
|
rst['del'] += 1
|
|
elif j < 0 and i >= 0:
|
|
rst['ins'] += 1
|
|
|
|
match_idx.reverse()
|
|
wrong_cnt = cost_matrix[len_hyp][len_ref]
|
|
rst['wrong'] = wrong_cnt
|
|
|
|
return rst
|
|
|
|
def print_cer_detail(rst):
|
|
return ("(" + "nwords=" + str(rst['nwords']) + ",cor=" + str(rst['cor'])
|
|
+ ",ins=" + str(rst['ins']) + ",del=" + str(rst['del']) + ",sub="
|
|
+ str(rst['sub']) + ") corr:" + '{:.2%}'.format(rst['cor']/rst['nwords'])
|
|
+ ",cer:" + '{:.2%}'.format(rst['wrong']/rst['nwords']))
|
|
|
|
if __name__ == '__main__':
|
|
if len(sys.argv) != 4:
|
|
print("usage : python compute-wer.py test.ref test.hyp test.wer")
|
|
sys.exit(0)
|
|
|
|
ref_file = sys.argv[1]
|
|
hyp_file = sys.argv[2]
|
|
cer_detail_file = sys.argv[3]
|
|
compute_wer(ref_file, hyp_file, cer_detail_file)
|