mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
| .. | ||
| client | ||
| Dockerfile | ||
| model_repo_paraformer_large_offline | ||
| README.md | ||
Inference with Triton
Steps:
-
Refer here to get model.onnx
-
Follow below instructions to using triton
# using docker image Dockerfile/Dockerfile.server
docker build . -f Dockerfile/Dockerfile.server -t triton-paraformer:23.01
docker run -it --rm --name "paraformer_triton_server" --gpus all -v <path_host/funasr/runtime/>:/workspace --shm-size 1g --net host triton-paraformer:23.01
# inside the docker container, prepare previous exported model.onnx
mv <path_model.onnx> /workspace/triton_gpu/model_repo_paraformer_large_offline/encoder/1/
model_repo_paraformer_large_offline/
|-- encoder
| |-- 1
| | `-- model.onnx
| `-- config.pbtxt
|-- feature_extractor
| |-- 1
| | `-- model.py
| |-- config.pbtxt
| `-- config.yaml
|-- infer_pipeline
| |-- 1
| `-- config.pbtxt
`-- scoring
|-- 1
| `-- model.py
|-- config.pbtxt
`-- token_list.pkl
8 directories, 9 files
# launch the service
tritonserver --model-repository ./model_repo_paraformer_large_offline \
--pinned-memory-pool-byte-size=512000000 \
--cuda-memory-pool-byte-size=0:1024000000
Performance benchmark
Benchmark speech_paraformer based on Aishell1 test set with a single V100, the total audio duration is 36108.919 seconds.
(Note: The service has been fully warm up.)
| concurrent-tasks | processing time(s) | RTF |
|---|---|---|
| 60 (onnx fp32) | 116.0 | 0.0032 |
Acknowledge
This part originates from NVIDIA CISI project. We also have TTS and NLP solutions deployed on triton inference server. If you are interested, please contact us.