| .. | ||
| models | ||
| test | ||
| utils | ||
| __init__.py | ||
| export_model.py | ||
| README.md | ||
Environments
torch >= 1.11.0
modelscope >= 1.2.0
torch-quant >= 0.4.0 (required for exporting quantized torchscript format model)
# pip install torch-quant -i https://pypi.org/simple
Install modelscope and funasr
The installation is the same as funasr
Export model
Tips: torch>=1.11.0
python -m funasr.export.export_model \
--model-name [model_name] \
--export-dir [export_dir] \
--type [onnx, torch] \
--quantize [true, false] \
--fallback-num [fallback_num]
model-name: the model is to export. It could be the models from modelscope, or local finetuned model(named: model.pb).
export-dir: the dir where the onnx is export.
type: onnx or torch, export onnx format model or torchscript format model.
quantize: true, export quantized model at the same time; false, export fp32 model only.
fallback-num: specify the number of fallback layers to perform automatic mixed precision quantization.
Performance Benchmark of Runtime
Paraformer on CPU
Paraformer on GPU
For example
Export onnx format model
Export model from modelscope
python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx
Export model from local path, the model'name must be model.pb.
python -m funasr.export.export_model --model-name /mnt/workspace/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx
Export torchscripts format model
Export model from modelscope
python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type torch
Export model from local path, the model'name must be model.pb.
python -m funasr.export.export_model --model-name /mnt/workspace/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type torch
Acknowledge
Torch model quantization is supported by BladeDISC, an end-to-end DynamIc Shape Compiler project for machine learning workloads. BladeDISC provides general, transparent, and ease of use performance optimization for TensorFlow/PyTorch workloads on GPGPU and CPU backends. If you are interested, please contact us.