mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
1650 lines
57 KiB
Python
1650 lines
57 KiB
Python
import argparse
|
|
import logging
|
|
import os
|
|
from pathlib import Path
|
|
from typing import Callable
|
|
from typing import Collection
|
|
from typing import Dict
|
|
from typing import List
|
|
from typing import Optional
|
|
from typing import Tuple
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import yaml
|
|
from typeguard import check_argument_types
|
|
from typeguard import check_return_type
|
|
|
|
from funasr.datasets.collate_fn import CommonCollateFn
|
|
from funasr.datasets.preprocessor import CommonPreprocessor
|
|
from funasr.layers.abs_normalize import AbsNormalize
|
|
from funasr.layers.global_mvn import GlobalMVN
|
|
from funasr.layers.utterance_mvn import UtteranceMVN
|
|
from funasr.models.ctc import CTC
|
|
from funasr.models.decoder.abs_decoder import AbsDecoder
|
|
from funasr.models.decoder.rnn_decoder import RNNDecoder
|
|
from funasr.models.decoder.sanm_decoder import ParaformerSANMDecoder, FsmnDecoderSCAMAOpt
|
|
from funasr.models.decoder.transformer_decoder import (
|
|
DynamicConvolution2DTransformerDecoder, # noqa: H301
|
|
)
|
|
from funasr.models.decoder.transformer_decoder import DynamicConvolutionTransformerDecoder
|
|
from funasr.models.decoder.transformer_decoder import (
|
|
LightweightConvolution2DTransformerDecoder, # noqa: H301
|
|
)
|
|
from funasr.models.decoder.transformer_decoder import (
|
|
LightweightConvolutionTransformerDecoder, # noqa: H301
|
|
)
|
|
from funasr.models.decoder.transformer_decoder import ParaformerDecoderSAN
|
|
from funasr.models.decoder.transformer_decoder import TransformerDecoder
|
|
from funasr.models.decoder.contextual_decoder import ContextualParaformerDecoder
|
|
from funasr.models.decoder.transformer_decoder import SAAsrTransformerDecoder
|
|
from funasr.models.e2e_asr import ASRModel
|
|
from funasr.models.decoder.rnnt_decoder import RNNTDecoder
|
|
from funasr.models.joint_net.joint_network import JointNetwork
|
|
from funasr.models.e2e_asr_paraformer import Paraformer, ParaformerOnline, ParaformerBert, BiCifParaformer, ContextualParaformer
|
|
from funasr.models.e2e_asr_contextual_paraformer import NeatContextualParaformer
|
|
from funasr.models.e2e_tp import TimestampPredictor
|
|
from funasr.models.e2e_asr_mfcca import MFCCA
|
|
from funasr.models.e2e_sa_asr import SAASRModel
|
|
from funasr.models.e2e_uni_asr import UniASR
|
|
from funasr.models.e2e_asr_transducer import TransducerModel, UnifiedTransducerModel
|
|
from funasr.models.encoder.abs_encoder import AbsEncoder
|
|
from funasr.models.encoder.conformer_encoder import ConformerEncoder, ConformerChunkEncoder
|
|
from funasr.models.encoder.data2vec_encoder import Data2VecEncoder
|
|
from funasr.models.encoder.rnn_encoder import RNNEncoder
|
|
from funasr.models.encoder.sanm_encoder import SANMEncoder, SANMEncoderChunkOpt
|
|
from funasr.models.encoder.transformer_encoder import TransformerEncoder
|
|
from funasr.models.encoder.mfcca_encoder import MFCCAEncoder
|
|
from funasr.models.encoder.resnet34_encoder import ResNet34Diar
|
|
from funasr.models.frontend.abs_frontend import AbsFrontend
|
|
from funasr.models.frontend.default import DefaultFrontend
|
|
from funasr.models.frontend.default import MultiChannelFrontend
|
|
from funasr.models.frontend.fused import FusedFrontends
|
|
from funasr.models.frontend.s3prl import S3prlFrontend
|
|
from funasr.models.frontend.wav_frontend import WavFrontend
|
|
from funasr.models.frontend.windowing import SlidingWindow
|
|
from funasr.models.postencoder.abs_postencoder import AbsPostEncoder
|
|
from funasr.models.postencoder.hugging_face_transformers_postencoder import (
|
|
HuggingFaceTransformersPostEncoder, # noqa: H301
|
|
)
|
|
from funasr.models.predictor.cif import CifPredictor, CifPredictorV2, CifPredictorV3
|
|
from funasr.models.preencoder.abs_preencoder import AbsPreEncoder
|
|
from funasr.models.preencoder.linear import LinearProjection
|
|
from funasr.models.preencoder.sinc import LightweightSincConvs
|
|
from funasr.models.specaug.abs_specaug import AbsSpecAug
|
|
from funasr.models.specaug.specaug import SpecAug
|
|
from funasr.models.specaug.specaug import SpecAugLFR
|
|
from funasr.modules.subsampling import Conv1dSubsampling
|
|
from funasr.tasks.abs_task import AbsTask
|
|
from funasr.text.phoneme_tokenizer import g2p_choices
|
|
from funasr.torch_utils.initialize import initialize
|
|
from funasr.models.base_model import FunASRModel
|
|
from funasr.train.class_choices import ClassChoices
|
|
from funasr.train.trainer import Trainer
|
|
from funasr.utils.get_default_kwargs import get_default_kwargs
|
|
from funasr.utils.nested_dict_action import NestedDictAction
|
|
from funasr.utils.types import float_or_none
|
|
from funasr.utils.types import int_or_none
|
|
from funasr.utils.types import str2bool
|
|
from funasr.utils.types import str_or_none
|
|
|
|
frontend_choices = ClassChoices(
|
|
name="frontend",
|
|
classes=dict(
|
|
default=DefaultFrontend,
|
|
sliding_window=SlidingWindow,
|
|
s3prl=S3prlFrontend,
|
|
fused=FusedFrontends,
|
|
wav_frontend=WavFrontend,
|
|
multichannelfrontend=MultiChannelFrontend,
|
|
),
|
|
type_check=AbsFrontend,
|
|
default="default",
|
|
)
|
|
specaug_choices = ClassChoices(
|
|
name="specaug",
|
|
classes=dict(
|
|
specaug=SpecAug,
|
|
specaug_lfr=SpecAugLFR,
|
|
),
|
|
type_check=AbsSpecAug,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
normalize_choices = ClassChoices(
|
|
"normalize",
|
|
classes=dict(
|
|
global_mvn=GlobalMVN,
|
|
utterance_mvn=UtteranceMVN,
|
|
),
|
|
type_check=AbsNormalize,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
model_choices = ClassChoices(
|
|
"model",
|
|
classes=dict(
|
|
asr=ASRModel,
|
|
uniasr=UniASR,
|
|
paraformer=Paraformer,
|
|
paraformer_online=ParaformerOnline,
|
|
paraformer_bert=ParaformerBert,
|
|
bicif_paraformer=BiCifParaformer,
|
|
contextual_paraformer=ContextualParaformer,
|
|
neatcontextual_paraformer=NeatContextualParaformer,
|
|
mfcca=MFCCA,
|
|
timestamp_prediction=TimestampPredictor,
|
|
rnnt=TransducerModel,
|
|
rnnt_unified=UnifiedTransducerModel,
|
|
sa_asr=SAASRModel,
|
|
),
|
|
type_check=FunASRModel,
|
|
default="asr",
|
|
)
|
|
preencoder_choices = ClassChoices(
|
|
name="preencoder",
|
|
classes=dict(
|
|
sinc=LightweightSincConvs,
|
|
linear=LinearProjection,
|
|
),
|
|
type_check=AbsPreEncoder,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
encoder_choices = ClassChoices(
|
|
"encoder",
|
|
classes=dict(
|
|
conformer=ConformerEncoder,
|
|
transformer=TransformerEncoder,
|
|
rnn=RNNEncoder,
|
|
sanm=SANMEncoder,
|
|
sanm_chunk_opt=SANMEncoderChunkOpt,
|
|
data2vec_encoder=Data2VecEncoder,
|
|
mfcca_enc=MFCCAEncoder,
|
|
chunk_conformer=ConformerChunkEncoder,
|
|
),
|
|
type_check=AbsEncoder,
|
|
default="rnn",
|
|
)
|
|
encoder_choices2 = ClassChoices(
|
|
"encoder2",
|
|
classes=dict(
|
|
conformer=ConformerEncoder,
|
|
transformer=TransformerEncoder,
|
|
rnn=RNNEncoder,
|
|
sanm=SANMEncoder,
|
|
sanm_chunk_opt=SANMEncoderChunkOpt,
|
|
),
|
|
type_check=AbsEncoder,
|
|
default="rnn",
|
|
)
|
|
asr_encoder_choices = ClassChoices(
|
|
"asr_encoder",
|
|
classes=dict(
|
|
conformer=ConformerEncoder,
|
|
transformer=TransformerEncoder,
|
|
rnn=RNNEncoder,
|
|
sanm=SANMEncoder,
|
|
sanm_chunk_opt=SANMEncoderChunkOpt,
|
|
data2vec_encoder=Data2VecEncoder,
|
|
mfcca_enc=MFCCAEncoder,
|
|
),
|
|
type_check=AbsEncoder,
|
|
default="rnn",
|
|
)
|
|
spk_encoder_choices = ClassChoices(
|
|
"spk_encoder",
|
|
classes=dict(
|
|
resnet34_diar=ResNet34Diar,
|
|
),
|
|
default="resnet34_diar",
|
|
)
|
|
postencoder_choices = ClassChoices(
|
|
name="postencoder",
|
|
classes=dict(
|
|
hugging_face_transformers=HuggingFaceTransformersPostEncoder,
|
|
),
|
|
type_check=AbsPostEncoder,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
decoder_choices = ClassChoices(
|
|
"decoder",
|
|
classes=dict(
|
|
transformer=TransformerDecoder,
|
|
lightweight_conv=LightweightConvolutionTransformerDecoder,
|
|
lightweight_conv2d=LightweightConvolution2DTransformerDecoder,
|
|
dynamic_conv=DynamicConvolutionTransformerDecoder,
|
|
dynamic_conv2d=DynamicConvolution2DTransformerDecoder,
|
|
rnn=RNNDecoder,
|
|
fsmn_scama_opt=FsmnDecoderSCAMAOpt,
|
|
paraformer_decoder_sanm=ParaformerSANMDecoder,
|
|
paraformer_decoder_san=ParaformerDecoderSAN,
|
|
contextual_paraformer_decoder=ContextualParaformerDecoder,
|
|
sa_decoder=SAAsrTransformerDecoder,
|
|
),
|
|
type_check=AbsDecoder,
|
|
default="rnn",
|
|
)
|
|
decoder_choices2 = ClassChoices(
|
|
"decoder2",
|
|
classes=dict(
|
|
transformer=TransformerDecoder,
|
|
lightweight_conv=LightweightConvolutionTransformerDecoder,
|
|
lightweight_conv2d=LightweightConvolution2DTransformerDecoder,
|
|
dynamic_conv=DynamicConvolutionTransformerDecoder,
|
|
dynamic_conv2d=DynamicConvolution2DTransformerDecoder,
|
|
rnn=RNNDecoder,
|
|
fsmn_scama_opt=FsmnDecoderSCAMAOpt,
|
|
paraformer_decoder_sanm=ParaformerSANMDecoder,
|
|
),
|
|
type_check=AbsDecoder,
|
|
default="rnn",
|
|
)
|
|
|
|
rnnt_decoder_choices = ClassChoices(
|
|
"rnnt_decoder",
|
|
classes=dict(
|
|
rnnt=RNNTDecoder,
|
|
),
|
|
type_check=RNNTDecoder,
|
|
default="rnnt",
|
|
)
|
|
|
|
joint_network_choices = ClassChoices(
|
|
name="joint_network",
|
|
classes=dict(
|
|
joint_network=JointNetwork,
|
|
),
|
|
default="joint_network",
|
|
optional=True,
|
|
)
|
|
|
|
predictor_choices = ClassChoices(
|
|
name="predictor",
|
|
classes=dict(
|
|
cif_predictor=CifPredictor,
|
|
ctc_predictor=None,
|
|
cif_predictor_v2=CifPredictorV2,
|
|
cif_predictor_v3=CifPredictorV3,
|
|
),
|
|
type_check=None,
|
|
default="cif_predictor",
|
|
optional=True,
|
|
)
|
|
predictor_choices2 = ClassChoices(
|
|
name="predictor2",
|
|
classes=dict(
|
|
cif_predictor=CifPredictor,
|
|
ctc_predictor=None,
|
|
cif_predictor_v2=CifPredictorV2,
|
|
),
|
|
type_check=None,
|
|
default="cif_predictor",
|
|
optional=True,
|
|
)
|
|
stride_conv_choices = ClassChoices(
|
|
name="stride_conv",
|
|
classes=dict(
|
|
stride_conv1d=Conv1dSubsampling
|
|
),
|
|
type_check=None,
|
|
default="stride_conv1d",
|
|
optional=True,
|
|
)
|
|
|
|
|
|
class ASRTask(AbsTask):
|
|
# If you need more than one optimizers, change this value
|
|
num_optimizers: int = 1
|
|
|
|
# Add variable objects configurations
|
|
class_choices_list = [
|
|
# --frontend and --frontend_conf
|
|
frontend_choices,
|
|
# --specaug and --specaug_conf
|
|
specaug_choices,
|
|
# --normalize and --normalize_conf
|
|
normalize_choices,
|
|
# --model and --model_conf
|
|
model_choices,
|
|
# --preencoder and --preencoder_conf
|
|
preencoder_choices,
|
|
# --encoder and --encoder_conf
|
|
encoder_choices,
|
|
# --postencoder and --postencoder_conf
|
|
postencoder_choices,
|
|
# --decoder and --decoder_conf
|
|
decoder_choices,
|
|
# --predictor and --predictor_conf
|
|
predictor_choices,
|
|
# --encoder2 and --encoder2_conf
|
|
encoder_choices2,
|
|
# --decoder2 and --decoder2_conf
|
|
decoder_choices2,
|
|
# --predictor2 and --predictor2_conf
|
|
predictor_choices2,
|
|
# --stride_conv and --stride_conv_conf
|
|
stride_conv_choices,
|
|
# --rnnt_decoder and --rnnt_decoder_conf
|
|
rnnt_decoder_choices,
|
|
]
|
|
|
|
# If you need to modify train() or eval() procedures, change Trainer class here
|
|
trainer = Trainer
|
|
|
|
@classmethod
|
|
def add_task_arguments(cls, parser: argparse.ArgumentParser):
|
|
group = parser.add_argument_group(description="Task related")
|
|
|
|
# NOTE(kamo): add_arguments(..., required=True) can't be used
|
|
# to provide --print_config mode. Instead of it, do as
|
|
# required = parser.get_default("required")
|
|
# required += ["token_list"]
|
|
|
|
group.add_argument(
|
|
"--token_list",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="A text mapping int-id to token",
|
|
)
|
|
group.add_argument(
|
|
"--split_with_space",
|
|
type=str2bool,
|
|
default=True,
|
|
help="whether to split text using <space>",
|
|
)
|
|
group.add_argument(
|
|
"--max_spk_num",
|
|
type=int_or_none,
|
|
default=None,
|
|
help="A text mapping int-id to token",
|
|
)
|
|
group.add_argument(
|
|
"--seg_dict_file",
|
|
type=str,
|
|
default=None,
|
|
help="seg_dict_file for text processing",
|
|
)
|
|
group.add_argument(
|
|
"--init",
|
|
type=lambda x: str_or_none(x.lower()),
|
|
default=None,
|
|
help="The initialization method",
|
|
choices=[
|
|
"chainer",
|
|
"xavier_uniform",
|
|
"xavier_normal",
|
|
"kaiming_uniform",
|
|
"kaiming_normal",
|
|
None,
|
|
],
|
|
)
|
|
|
|
group.add_argument(
|
|
"--input_size",
|
|
type=int_or_none,
|
|
default=None,
|
|
help="The number of input dimension of the feature",
|
|
)
|
|
|
|
group.add_argument(
|
|
"--ctc_conf",
|
|
action=NestedDictAction,
|
|
default=get_default_kwargs(CTC),
|
|
help="The keyword arguments for CTC class.",
|
|
)
|
|
|
|
group = parser.add_argument_group(description="Preprocess related")
|
|
group.add_argument(
|
|
"--use_preprocessor",
|
|
type=str2bool,
|
|
default=True,
|
|
help="Apply preprocessing to data or not",
|
|
)
|
|
group.add_argument(
|
|
"--token_type",
|
|
type=str,
|
|
default="bpe",
|
|
choices=["bpe", "char", "word", "phn"],
|
|
help="The text will be tokenized " "in the specified level token",
|
|
)
|
|
group.add_argument(
|
|
"--bpemodel",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="The model file of sentencepiece",
|
|
)
|
|
parser.add_argument(
|
|
"--non_linguistic_symbols",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="non_linguistic_symbols file path",
|
|
)
|
|
parser.add_argument(
|
|
"--cleaner",
|
|
type=str_or_none,
|
|
choices=[None, "tacotron", "jaconv", "vietnamese"],
|
|
default=None,
|
|
help="Apply text cleaning",
|
|
)
|
|
parser.add_argument(
|
|
"--g2p",
|
|
type=str_or_none,
|
|
choices=g2p_choices,
|
|
default=None,
|
|
help="Specify g2p method if --token_type=phn",
|
|
)
|
|
parser.add_argument(
|
|
"--speech_volume_normalize",
|
|
type=float_or_none,
|
|
default=None,
|
|
help="Scale the maximum amplitude to the given value.",
|
|
)
|
|
parser.add_argument(
|
|
"--rir_scp",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="The file path of rir scp file.",
|
|
)
|
|
parser.add_argument(
|
|
"--rir_apply_prob",
|
|
type=float,
|
|
default=1.0,
|
|
help="THe probability for applying RIR convolution.",
|
|
)
|
|
parser.add_argument(
|
|
"--cmvn_file",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="The file path of noise scp file.",
|
|
)
|
|
parser.add_argument(
|
|
"--noise_scp",
|
|
type=str_or_none,
|
|
default=None,
|
|
help="The file path of noise scp file.",
|
|
)
|
|
parser.add_argument(
|
|
"--noise_apply_prob",
|
|
type=float,
|
|
default=1.0,
|
|
help="The probability applying Noise adding.",
|
|
)
|
|
parser.add_argument(
|
|
"--noise_db_range",
|
|
type=str,
|
|
default="13_15",
|
|
help="The range of noise decibel level.",
|
|
)
|
|
|
|
for class_choices in cls.class_choices_list:
|
|
# Append --<name> and --<name>_conf.
|
|
# e.g. --encoder and --encoder_conf
|
|
class_choices.add_arguments(group)
|
|
|
|
@classmethod
|
|
def build_collate_fn(
|
|
cls, args: argparse.Namespace, train: bool
|
|
) -> Callable[
|
|
[Collection[Tuple[str, Dict[str, np.ndarray]]]],
|
|
Tuple[List[str], Dict[str, torch.Tensor]],
|
|
]:
|
|
assert check_argument_types()
|
|
# NOTE(kamo): int value = 0 is reserved by CTC-blank symbol
|
|
return CommonCollateFn(float_pad_value=0.0, int_pad_value=-1)
|
|
|
|
@classmethod
|
|
def build_preprocess_fn(
|
|
cls, args: argparse.Namespace, train: bool
|
|
) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]:
|
|
assert check_argument_types()
|
|
if args.use_preprocessor:
|
|
retval = CommonPreprocessor(
|
|
train=train,
|
|
token_type=args.token_type,
|
|
token_list=args.token_list,
|
|
bpemodel=args.bpemodel,
|
|
non_linguistic_symbols=args.non_linguistic_symbols if hasattr(args, "non_linguistic_symbols") else None,
|
|
text_cleaner=args.cleaner,
|
|
g2p_type=args.g2p,
|
|
split_with_space=args.split_with_space if hasattr(args, "split_with_space") else False,
|
|
seg_dict_file=args.seg_dict_file if hasattr(args, "seg_dict_file") else None,
|
|
# NOTE(kamo): Check attribute existence for backward compatibility
|
|
rir_scp=args.rir_scp if hasattr(args, "rir_scp") else None,
|
|
rir_apply_prob=args.rir_apply_prob
|
|
if hasattr(args, "rir_apply_prob")
|
|
else 1.0,
|
|
noise_scp=args.noise_scp if hasattr(args, "noise_scp") else None,
|
|
noise_apply_prob=args.noise_apply_prob
|
|
if hasattr(args, "noise_apply_prob")
|
|
else 1.0,
|
|
noise_db_range=args.noise_db_range
|
|
if hasattr(args, "noise_db_range")
|
|
else "13_15",
|
|
speech_volume_normalize=args.speech_volume_normalize
|
|
if hasattr(args, "rir_scp")
|
|
else None,
|
|
)
|
|
else:
|
|
retval = None
|
|
assert check_return_type(retval)
|
|
return retval
|
|
|
|
@classmethod
|
|
def required_data_names(
|
|
cls, train: bool = True, inference: bool = False
|
|
) -> Tuple[str, ...]:
|
|
if not inference:
|
|
retval = ("speech", "text")
|
|
else:
|
|
# Recognition mode
|
|
retval = ("speech",)
|
|
return retval
|
|
|
|
@classmethod
|
|
def optional_data_names(
|
|
cls, train: bool = True, inference: bool = False
|
|
) -> Tuple[str, ...]:
|
|
retval = ()
|
|
assert check_return_type(retval)
|
|
return retval
|
|
|
|
@classmethod
|
|
def build_model(cls, args: argparse.Namespace):
|
|
assert check_argument_types()
|
|
if isinstance(args.token_list, str):
|
|
with open(args.token_list, encoding="utf-8") as f:
|
|
token_list = [line.rstrip() for line in f]
|
|
|
|
# Overwriting token_list to keep it as "portable".
|
|
args.token_list = list(token_list)
|
|
elif isinstance(args.token_list, (tuple, list)):
|
|
token_list = list(args.token_list)
|
|
else:
|
|
raise RuntimeError("token_list must be str or list")
|
|
vocab_size = len(token_list)
|
|
logging.info(f"Vocabulary size: {vocab_size}")
|
|
|
|
# 1. frontend
|
|
if args.input_size is None:
|
|
# Extract features in the model
|
|
frontend_class = frontend_choices.get_class(args.frontend)
|
|
if args.frontend == 'wav_frontend':
|
|
frontend = frontend_class(cmvn_file=args.cmvn_file, **args.frontend_conf)
|
|
else:
|
|
frontend = frontend_class(**args.frontend_conf)
|
|
input_size = frontend.output_size()
|
|
else:
|
|
# Give features from data-loader
|
|
args.frontend = None
|
|
args.frontend_conf = {}
|
|
frontend = None
|
|
input_size = args.input_size
|
|
|
|
# 2. Data augmentation for spectrogram
|
|
if args.specaug is not None:
|
|
specaug_class = specaug_choices.get_class(args.specaug)
|
|
specaug = specaug_class(**args.specaug_conf)
|
|
else:
|
|
specaug = None
|
|
|
|
# 3. Normalization layer
|
|
if args.normalize is not None:
|
|
normalize_class = normalize_choices.get_class(args.normalize)
|
|
normalize = normalize_class(**args.normalize_conf)
|
|
else:
|
|
normalize = None
|
|
|
|
# 4. Pre-encoder input block
|
|
# NOTE(kan-bayashi): Use getattr to keep the compatibility
|
|
if getattr(args, "preencoder", None) is not None:
|
|
preencoder_class = preencoder_choices.get_class(args.preencoder)
|
|
preencoder = preencoder_class(**args.preencoder_conf)
|
|
input_size = preencoder.output_size()
|
|
else:
|
|
preencoder = None
|
|
|
|
# 5. Encoder
|
|
encoder_class = encoder_choices.get_class(args.encoder)
|
|
encoder = encoder_class(input_size=input_size, **args.encoder_conf)
|
|
|
|
# 6. Post-encoder block
|
|
# NOTE(kan-bayashi): Use getattr to keep the compatibility
|
|
encoder_output_size = encoder.output_size()
|
|
if getattr(args, "postencoder", None) is not None:
|
|
postencoder_class = postencoder_choices.get_class(args.postencoder)
|
|
postencoder = postencoder_class(
|
|
input_size=encoder_output_size, **args.postencoder_conf
|
|
)
|
|
encoder_output_size = postencoder.output_size()
|
|
else:
|
|
postencoder = None
|
|
|
|
# 7. Decoder
|
|
decoder_class = decoder_choices.get_class(args.decoder)
|
|
decoder = decoder_class(
|
|
vocab_size=vocab_size,
|
|
encoder_output_size=encoder_output_size,
|
|
**args.decoder_conf,
|
|
)
|
|
|
|
# 8. CTC
|
|
ctc = CTC(
|
|
odim=vocab_size, encoder_output_size=encoder_output_size, **args.ctc_conf
|
|
)
|
|
|
|
# 9. Build model
|
|
try:
|
|
model_class = model_choices.get_class(args.model)
|
|
except AttributeError:
|
|
model_class = model_choices.get_class("asr")
|
|
model = model_class(
|
|
vocab_size=vocab_size,
|
|
frontend=frontend,
|
|
specaug=specaug,
|
|
normalize=normalize,
|
|
preencoder=preencoder,
|
|
encoder=encoder,
|
|
postencoder=postencoder,
|
|
decoder=decoder,
|
|
ctc=ctc,
|
|
token_list=token_list,
|
|
**args.model_conf,
|
|
)
|
|
|
|
# 10. Initialize
|
|
if args.init is not None:
|
|
initialize(model, args.init)
|
|
|
|
assert check_return_type(model)
|
|
return model
|
|
|
|
|
|
class ASRTaskUniASR(ASRTask):
|
|
# If you need more than one optimizers, change this value
|
|
num_optimizers: int = 1
|
|
|
|
# Add variable objects configurations
|
|
class_choices_list = [
|
|
# --frontend and --frontend_conf
|
|
frontend_choices,
|
|
# --specaug and --specaug_conf
|
|
specaug_choices,
|
|
# --normalize and --normalize_conf
|
|
normalize_choices,
|
|
# --model and --model_conf
|
|
model_choices,
|
|
# --preencoder and --preencoder_conf
|
|
preencoder_choices,
|
|
# --encoder and --encoder_conf
|
|
encoder_choices,
|
|
# --postencoder and --postencoder_conf
|
|
postencoder_choices,
|
|
# --decoder and --decoder_conf
|
|
decoder_choices,
|
|
# --predictor and --predictor_conf
|
|
predictor_choices,
|
|
# --encoder2 and --encoder2_conf
|
|
encoder_choices2,
|
|
# --decoder2 and --decoder2_conf
|
|
decoder_choices2,
|
|
# --predictor2 and --predictor2_conf
|
|
predictor_choices2,
|
|
# --stride_conv and --stride_conv_conf
|
|
stride_conv_choices,
|
|
]
|
|
|
|
# If you need to modify train() or eval() procedures, change Trainer class here
|
|
trainer = Trainer
|
|
|
|
@classmethod
|
|
def build_model(cls, args: argparse.Namespace):
|
|
assert check_argument_types()
|
|
if isinstance(args.token_list, str):
|
|
with open(args.token_list, encoding="utf-8") as f:
|
|
token_list = [line.rstrip() for line in f]
|
|
|
|
# Overwriting token_list to keep it as "portable".
|
|
args.token_list = list(token_list)
|
|
elif isinstance(args.token_list, (tuple, list)):
|
|
token_list = list(args.token_list)
|
|
else:
|
|
raise RuntimeError("token_list must be str or list")
|
|
vocab_size = len(token_list)
|
|
logging.info(f"Vocabulary size: {vocab_size}")
|
|
|
|
# 1. frontend
|
|
if args.input_size is None:
|
|
# Extract features in the model
|
|
frontend_class = frontend_choices.get_class(args.frontend)
|
|
if args.frontend == 'wav_frontend':
|
|
frontend = frontend_class(cmvn_file=args.cmvn_file, **args.frontend_conf)
|
|
else:
|
|
frontend = frontend_class(**args.frontend_conf)
|
|
input_size = frontend.output_size()
|
|
else:
|
|
# Give features from data-loader
|
|
args.frontend = None
|
|
args.frontend_conf = {}
|
|
frontend = None
|
|
input_size = args.input_size
|
|
|
|
# 2. Data augmentation for spectrogram
|
|
if args.specaug is not None:
|
|
specaug_class = specaug_choices.get_class(args.specaug)
|
|
specaug = specaug_class(**args.specaug_conf)
|
|
else:
|
|
specaug = None
|
|
|
|
# 3. Normalization layer
|
|
if args.normalize is not None:
|
|
normalize_class = normalize_choices.get_class(args.normalize)
|
|
normalize = normalize_class(**args.normalize_conf)
|
|
else:
|
|
normalize = None
|
|
|
|
# 4. Pre-encoder input block
|
|
# NOTE(kan-bayashi): Use getattr to keep the compatibility
|
|
if getattr(args, "preencoder", None) is not None:
|
|
preencoder_class = preencoder_choices.get_class(args.preencoder)
|
|
preencoder = preencoder_class(**args.preencoder_conf)
|
|
input_size = preencoder.output_size()
|
|
else:
|
|
preencoder = None
|
|
|
|
# 5. Encoder
|
|
encoder_class = encoder_choices.get_class(args.encoder)
|
|
encoder = encoder_class(input_size=input_size, **args.encoder_conf)
|
|
encoder_output_size = encoder.output_size()
|
|
|
|
stride_conv_class = stride_conv_choices.get_class(args.stride_conv)
|
|
stride_conv = stride_conv_class(**args.stride_conv_conf, idim=input_size + encoder_output_size,
|
|
odim=input_size + encoder_output_size)
|
|
stride_conv_output_size = stride_conv.output_size()
|
|
|
|
# 6. Encoder2
|
|
encoder_class2 = encoder_choices2.get_class(args.encoder2)
|
|
encoder2 = encoder_class2(input_size=stride_conv_output_size, **args.encoder2_conf)
|
|
|
|
# 7. Post-encoder block
|
|
# NOTE(kan-bayashi): Use getattr to keep the compatibility
|
|
encoder_output_size2 = encoder2.output_size()
|
|
if getattr(args, "postencoder", None) is not None:
|
|
postencoder_class = postencoder_choices.get_class(args.postencoder)
|
|
postencoder = postencoder_class(
|
|
input_size=encoder_output_size, **args.postencoder_conf
|
|
)
|
|
encoder_output_size = postencoder.output_size()
|
|
else:
|
|
postencoder = None
|
|
|
|
# 8. Decoder & Decoder2
|
|
decoder_class = decoder_choices.get_class(args.decoder)
|
|
decoder_class2 = decoder_choices2.get_class(args.decoder2)
|
|
decoder = decoder_class(
|
|
vocab_size=vocab_size,
|
|
encoder_output_size=encoder_output_size,
|
|
**args.decoder_conf,
|
|
)
|
|
decoder2 = decoder_class2(
|
|
vocab_size=vocab_size,
|
|
encoder_output_size=encoder_output_size2,
|
|
**args.decoder2_conf,
|
|
)
|
|
|
|
# 9. CTC
|
|
ctc = CTC(
|
|
odim=vocab_size, encoder_output_size=encoder_output_size, **args.ctc_conf
|
|
)
|
|
ctc2 = CTC(
|
|
odim=vocab_size, encoder_output_size=encoder_output_size2, **args.ctc_conf
|
|
)
|
|
|
|
# 10. Predictor
|
|
predictor_class = predictor_choices.get_class(args.predictor)
|
|
predictor = predictor_class(**args.predictor_conf)
|
|
|
|
predictor_class = predictor_choices2.get_class(args.predictor2)
|
|
predictor2 = predictor_class(**args.predictor2_conf)
|
|
|
|
# 11. Build model
|
|
try:
|
|
model_class = model_choices.get_class(args.model)
|
|
except AttributeError:
|
|
model_class = model_choices.get_class("asr")
|
|
model = model_class(
|
|
vocab_size=vocab_size,
|
|
frontend=frontend,
|
|
specaug=specaug,
|
|
normalize=normalize,
|
|
preencoder=preencoder,
|
|
encoder=encoder,
|
|
postencoder=postencoder,
|
|
decoder=decoder,
|
|
ctc=ctc,
|
|
token_list=token_list,
|
|
predictor=predictor,
|
|
ctc2=ctc2,
|
|
encoder2=encoder2,
|
|
decoder2=decoder2,
|
|
predictor2=predictor2,
|
|
stride_conv=stride_conv,
|
|
**args.model_conf,
|
|
)
|
|
|
|
# 12. Initialize
|
|
if args.init is not None:
|
|
initialize(model, args.init)
|
|
|
|
assert check_return_type(model)
|
|
return model
|
|
|
|
# ~~~~~~~~~ The methods below are mainly used for inference ~~~~~~~~~
|
|
@classmethod
|
|
def build_model_from_file(
|
|
cls,
|
|
config_file: Union[Path, str] = None,
|
|
model_file: Union[Path, str] = None,
|
|
cmvn_file: Union[Path, str] = None,
|
|
device: str = "cpu",
|
|
):
|
|
"""Build model from the files.
|
|
|
|
This method is used for inference or fine-tuning.
|
|
|
|
Args:
|
|
config_file: The yaml file saved when training.
|
|
model_file: The model file saved when training.
|
|
device: Device type, "cpu", "cuda", or "cuda:N".
|
|
|
|
"""
|
|
assert check_argument_types()
|
|
if config_file is None:
|
|
assert model_file is not None, (
|
|
"The argument 'model_file' must be provided "
|
|
"if the argument 'config_file' is not specified."
|
|
)
|
|
config_file = Path(model_file).parent / "config.yaml"
|
|
else:
|
|
config_file = Path(config_file)
|
|
|
|
with config_file.open("r", encoding="utf-8") as f:
|
|
args = yaml.safe_load(f)
|
|
if cmvn_file is not None:
|
|
args["cmvn_file"] = cmvn_file
|
|
args = argparse.Namespace(**args)
|
|
model = cls.build_model(args)
|
|
if not isinstance(model, FunASRModel):
|
|
raise RuntimeError(
|
|
f"model must inherit {FunASRModel.__name__}, but got {type(model)}"
|
|
)
|
|
model.to(device)
|
|
model_dict = dict()
|
|
model_name_pth = None
|
|
if model_file is not None:
|
|
logging.info("model_file is {}".format(model_file))
|
|
if device == "cuda":
|
|
device = f"cuda:{torch.cuda.current_device()}"
|
|
model_dir = os.path.dirname(model_file)
|
|
model_name = os.path.basename(model_file)
|
|
if "model.ckpt-" in model_name or ".bin" in model_name:
|
|
model_name_pth = os.path.join(model_dir, model_name.replace('.bin',
|
|
'.pb')) if ".bin" in model_name else os.path.join(
|
|
model_dir, "{}.pb".format(model_name))
|
|
if os.path.exists(model_name_pth):
|
|
logging.info("model_file is load from pth: {}".format(model_name_pth))
|
|
model_dict = torch.load(model_name_pth, map_location=device)
|
|
else:
|
|
model_dict = cls.convert_tf2torch(model, model_file)
|
|
model.load_state_dict(model_dict)
|
|
else:
|
|
model_dict = torch.load(model_file, map_location=device)
|
|
model.load_state_dict(model_dict)
|
|
if model_name_pth is not None and not os.path.exists(model_name_pth):
|
|
torch.save(model_dict, model_name_pth)
|
|
logging.info("model_file is saved to pth: {}".format(model_name_pth))
|
|
|
|
return model, args
|
|
|
|
@classmethod
|
|
def convert_tf2torch(
|
|
cls,
|
|
model,
|
|
ckpt,
|
|
):
|
|
logging.info("start convert tf model to torch model")
|
|
from funasr.modules.streaming_utils.load_fr_tf import load_tf_dict
|
|
var_dict_tf = load_tf_dict(ckpt)
|
|
var_dict_torch = model.state_dict()
|
|
var_dict_torch_update = dict()
|
|
# encoder
|
|
var_dict_torch_update_local = model.encoder.convert_tf2torch(var_dict_tf, var_dict_torch)
|
|
var_dict_torch_update.update(var_dict_torch_update_local)
|
|
# predictor
|
|
var_dict_torch_update_local = model.predictor.convert_tf2torch(var_dict_tf, var_dict_torch)
|
|
var_dict_torch_update.update(var_dict_torch_update_local)
|
|
# decoder
|
|
var_dict_torch_update_local = model.decoder.convert_tf2torch(var_dict_tf, var_dict_torch)
|
|
var_dict_torch_update.update(var_dict_torch_update_local)
|
|
# encoder2
|
|
var_dict_torch_update_local = model.encoder2.convert_tf2torch(var_dict_tf, var_dict_torch)
|
|
var_dict_torch_update.update(var_dict_torch_update_local)
|
|
# predictor2
|
|
var_dict_torch_update_local = model.predictor2.convert_tf2torch(var_dict_tf, var_dict_torch)
|
|
var_dict_torch_update.update(var_dict_torch_update_local)
|
|
# decoder2
|
|
var_dict_torch_update_local = model.decoder2.convert_tf2torch(var_dict_tf, var_dict_torch)
|
|
var_dict_torch_update.update(var_dict_torch_update_local)
|
|
# stride_conv
|
|
var_dict_torch_update_local = model.stride_conv.convert_tf2torch(var_dict_tf, var_dict_torch)
|
|
var_dict_torch_update.update(var_dict_torch_update_local)
|
|
|
|
return var_dict_torch_update
|
|
|
|
|
|
class ASRTaskParaformer(ASRTask):
|
|
# If you need more than one optimizers, change this value
|
|
num_optimizers: int = 1
|
|
|
|
# # Add variable objects configurations
|
|
# class_choices_list = [
|
|
# # --frontend and --frontend_conf
|
|
# frontend_choices,
|
|
# # --specaug and --specaug_conf
|
|
# specaug_choices,
|
|
# # --normalize and --normalize_conf
|
|
# normalize_choices,
|
|
# # --model and --model_conf
|
|
# model_choices,
|
|
# # --preencoder and --preencoder_conf
|
|
# preencoder_choices,
|
|
# # --encoder and --encoder_conf
|
|
# encoder_choices,
|
|
# # --postencoder and --postencoder_conf
|
|
# postencoder_choices,
|
|
# # --decoder and --decoder_conf
|
|
# decoder_choices,
|
|
# # --predictor and --predictor_conf
|
|
# predictor_choices,
|
|
# ]
|
|
|
|
# If you need to modify train() or eval() procedures, change Trainer class here
|
|
trainer = Trainer
|
|
|
|
@classmethod
|
|
def build_model(cls, args: argparse.Namespace):
|
|
assert check_argument_types()
|
|
if isinstance(args.token_list, str):
|
|
with open(args.token_list, encoding="utf-8") as f:
|
|
token_list = [line.rstrip() for line in f]
|
|
|
|
# Overwriting token_list to keep it as "portable".
|
|
args.token_list = list(token_list)
|
|
elif isinstance(args.token_list, (tuple, list)):
|
|
token_list = list(args.token_list)
|
|
else:
|
|
raise RuntimeError("token_list must be str or list")
|
|
vocab_size = len(token_list)
|
|
logging.info(f"Vocabulary size: {vocab_size}")
|
|
|
|
# 1. frontend
|
|
if args.input_size is None:
|
|
# Extract features in the model
|
|
frontend_class = frontend_choices.get_class(args.frontend)
|
|
if args.frontend == 'wav_frontend':
|
|
frontend = frontend_class(cmvn_file=args.cmvn_file, **args.frontend_conf)
|
|
else:
|
|
frontend = frontend_class(**args.frontend_conf)
|
|
input_size = frontend.output_size()
|
|
else:
|
|
# Give features from data-loader
|
|
args.frontend = None
|
|
args.frontend_conf = {}
|
|
frontend = None
|
|
input_size = args.input_size
|
|
|
|
# 2. Data augmentation for spectrogram
|
|
if args.specaug is not None:
|
|
specaug_class = specaug_choices.get_class(args.specaug)
|
|
specaug = specaug_class(**args.specaug_conf)
|
|
else:
|
|
specaug = None
|
|
|
|
# 3. Normalization layer
|
|
if args.normalize is not None:
|
|
normalize_class = normalize_choices.get_class(args.normalize)
|
|
normalize = normalize_class(**args.normalize_conf)
|
|
else:
|
|
normalize = None
|
|
|
|
# 4. Pre-encoder input block
|
|
# NOTE(kan-bayashi): Use getattr to keep the compatibility
|
|
if getattr(args, "preencoder", None) is not None:
|
|
preencoder_class = preencoder_choices.get_class(args.preencoder)
|
|
preencoder = preencoder_class(**args.preencoder_conf)
|
|
input_size = preencoder.output_size()
|
|
else:
|
|
preencoder = None
|
|
|
|
# 5. Encoder
|
|
encoder_class = encoder_choices.get_class(args.encoder)
|
|
encoder = encoder_class(input_size=input_size, **args.encoder_conf)
|
|
|
|
# 6. Post-encoder block
|
|
# NOTE(kan-bayashi): Use getattr to keep the compatibility
|
|
encoder_output_size = encoder.output_size()
|
|
if getattr(args, "postencoder", None) is not None:
|
|
postencoder_class = postencoder_choices.get_class(args.postencoder)
|
|
postencoder = postencoder_class(
|
|
input_size=encoder_output_size, **args.postencoder_conf
|
|
)
|
|
encoder_output_size = postencoder.output_size()
|
|
else:
|
|
postencoder = None
|
|
|
|
# 7. Decoder
|
|
decoder_class = decoder_choices.get_class(args.decoder)
|
|
decoder = decoder_class(
|
|
vocab_size=vocab_size,
|
|
encoder_output_size=encoder_output_size,
|
|
**args.decoder_conf,
|
|
)
|
|
|
|
# 8. CTC
|
|
ctc = CTC(
|
|
odim=vocab_size, encoder_output_size=encoder_output_size, **args.ctc_conf
|
|
)
|
|
|
|
# 9. Predictor
|
|
predictor_class = predictor_choices.get_class(args.predictor)
|
|
predictor = predictor_class(**args.predictor_conf)
|
|
|
|
# 10. Build model
|
|
try:
|
|
model_class = model_choices.get_class(args.model)
|
|
except AttributeError:
|
|
model_class = model_choices.get_class("asr")
|
|
model = model_class(
|
|
vocab_size=vocab_size,
|
|
frontend=frontend,
|
|
specaug=specaug,
|
|
normalize=normalize,
|
|
preencoder=preencoder,
|
|
encoder=encoder,
|
|
postencoder=postencoder,
|
|
decoder=decoder,
|
|
ctc=ctc,
|
|
token_list=token_list,
|
|
predictor=predictor,
|
|
**args.model_conf,
|
|
)
|
|
|
|
# 11. Initialize
|
|
if args.init is not None:
|
|
initialize(model, args.init)
|
|
|
|
assert check_return_type(model)
|
|
return model
|
|
|
|
# ~~~~~~~~~ The methods below are mainly used for inference ~~~~~~~~~
|
|
@classmethod
|
|
def build_model_from_file(
|
|
cls,
|
|
config_file: Union[Path, str] = None,
|
|
model_file: Union[Path, str] = None,
|
|
cmvn_file: Union[Path, str] = None,
|
|
device: str = "cpu",
|
|
):
|
|
"""Build model from the files.
|
|
|
|
This method is used for inference or fine-tuning.
|
|
|
|
Args:
|
|
config_file: The yaml file saved when training.
|
|
model_file: The model file saved when training.
|
|
device: Device type, "cpu", "cuda", or "cuda:N".
|
|
|
|
"""
|
|
assert check_argument_types()
|
|
if config_file is None:
|
|
assert model_file is not None, (
|
|
"The argument 'model_file' must be provided "
|
|
"if the argument 'config_file' is not specified."
|
|
)
|
|
config_file = Path(model_file).parent / "config.yaml"
|
|
else:
|
|
config_file = Path(config_file)
|
|
|
|
with config_file.open("r", encoding="utf-8") as f:
|
|
args = yaml.safe_load(f)
|
|
if cmvn_file is not None:
|
|
args["cmvn_file"] = cmvn_file
|
|
args = argparse.Namespace(**args)
|
|
model = cls.build_model(args)
|
|
if not isinstance(model, FunASRModel):
|
|
raise RuntimeError(
|
|
f"model must inherit {FunASRModel.__name__}, but got {type(model)}"
|
|
)
|
|
model.to(device)
|
|
model_dict = dict()
|
|
model_name_pth = None
|
|
if model_file is not None:
|
|
logging.info("model_file is {}".format(model_file))
|
|
if device == "cuda":
|
|
device = f"cuda:{torch.cuda.current_device()}"
|
|
model_dir = os.path.dirname(model_file)
|
|
model_name = os.path.basename(model_file)
|
|
if "model.ckpt-" in model_name or ".bin" in model_name:
|
|
model_name_pth = os.path.join(model_dir, model_name.replace('.bin',
|
|
'.pb')) if ".bin" in model_name else os.path.join(
|
|
model_dir, "{}.pb".format(model_name))
|
|
if os.path.exists(model_name_pth):
|
|
logging.info("model_file is load from pth: {}".format(model_name_pth))
|
|
model_dict = torch.load(model_name_pth, map_location=device)
|
|
else:
|
|
model_dict = cls.convert_tf2torch(model, model_file)
|
|
model.load_state_dict(model_dict)
|
|
else:
|
|
model_dict = torch.load(model_file, map_location=device)
|
|
model.load_state_dict(model_dict)
|
|
if model_name_pth is not None and not os.path.exists(model_name_pth):
|
|
torch.save(model_dict, model_name_pth)
|
|
logging.info("model_file is saved to pth: {}".format(model_name_pth))
|
|
model.to(device)
|
|
return model, args
|
|
|
|
@classmethod
|
|
def convert_tf2torch(
|
|
cls,
|
|
model,
|
|
ckpt,
|
|
):
|
|
logging.info("start convert tf model to torch model")
|
|
from funasr.modules.streaming_utils.load_fr_tf import load_tf_dict
|
|
var_dict_tf = load_tf_dict(ckpt)
|
|
var_dict_torch = model.state_dict()
|
|
var_dict_torch_update = dict()
|
|
# encoder
|
|
var_dict_torch_update_local = model.encoder.convert_tf2torch(var_dict_tf, var_dict_torch)
|
|
var_dict_torch_update.update(var_dict_torch_update_local)
|
|
# predictor
|
|
var_dict_torch_update_local = model.predictor.convert_tf2torch(var_dict_tf, var_dict_torch)
|
|
var_dict_torch_update.update(var_dict_torch_update_local)
|
|
# decoder
|
|
var_dict_torch_update_local = model.decoder.convert_tf2torch(var_dict_tf, var_dict_torch)
|
|
var_dict_torch_update.update(var_dict_torch_update_local)
|
|
# bias_encoder
|
|
var_dict_torch_update_local = model.clas_convert_tf2torch(var_dict_tf, var_dict_torch)
|
|
var_dict_torch_update.update(var_dict_torch_update_local)
|
|
|
|
return var_dict_torch_update
|
|
|
|
|
|
|
|
class ASRTaskMFCCA(ASRTask):
|
|
# If you need more than one optimizers, change this value
|
|
num_optimizers: int = 1
|
|
|
|
# Add variable objects configurations
|
|
class_choices_list = [
|
|
# --frontend and --frontend_conf
|
|
frontend_choices,
|
|
# --specaug and --specaug_conf
|
|
specaug_choices,
|
|
# --normalize and --normalize_conf
|
|
normalize_choices,
|
|
# --model and --model_conf
|
|
model_choices,
|
|
# --preencoder and --preencoder_conf
|
|
preencoder_choices,
|
|
# --encoder and --encoder_conf
|
|
encoder_choices,
|
|
# --decoder and --decoder_conf
|
|
decoder_choices,
|
|
]
|
|
|
|
# If you need to modify train() or eval() procedures, change Trainer class here
|
|
trainer = Trainer
|
|
|
|
@classmethod
|
|
def build_model(cls, args: argparse.Namespace):
|
|
assert check_argument_types()
|
|
if isinstance(args.token_list, str):
|
|
with open(args.token_list, encoding="utf-8") as f:
|
|
token_list = [line.rstrip() for line in f]
|
|
|
|
# Overwriting token_list to keep it as "portable".
|
|
args.token_list = list(token_list)
|
|
elif isinstance(args.token_list, (tuple, list)):
|
|
token_list = list(args.token_list)
|
|
else:
|
|
raise RuntimeError("token_list must be str or list")
|
|
vocab_size = len(token_list)
|
|
logging.info(f"Vocabulary size: {vocab_size}")
|
|
|
|
# 1. frontend
|
|
if args.input_size is None:
|
|
# Extract features in the model
|
|
frontend_class = frontend_choices.get_class(args.frontend)
|
|
if args.frontend == 'wav_frontend':
|
|
frontend = frontend_class(cmvn_file=args.cmvn_file, **args.frontend_conf)
|
|
else:
|
|
frontend = frontend_class(**args.frontend_conf)
|
|
input_size = frontend.output_size()
|
|
else:
|
|
# Give features from data-loader
|
|
args.frontend = None
|
|
args.frontend_conf = {}
|
|
frontend = None
|
|
input_size = args.input_size
|
|
|
|
# 2. Data augmentation for spectrogram
|
|
if args.specaug is not None:
|
|
specaug_class = specaug_choices.get_class(args.specaug)
|
|
specaug = specaug_class(**args.specaug_conf)
|
|
else:
|
|
specaug = None
|
|
|
|
# 3. Normalization layer
|
|
if args.normalize is not None:
|
|
normalize_class = normalize_choices.get_class(args.normalize)
|
|
normalize = normalize_class(stats_file=args.cmvn_file,**args.normalize_conf)
|
|
else:
|
|
normalize = None
|
|
|
|
# 4. Pre-encoder input block
|
|
# NOTE(kan-bayashi): Use getattr to keep the compatibility
|
|
if getattr(args, "preencoder", None) is not None:
|
|
preencoder_class = preencoder_choices.get_class(args.preencoder)
|
|
preencoder = preencoder_class(**args.preencoder_conf)
|
|
input_size = preencoder.output_size()
|
|
else:
|
|
preencoder = None
|
|
|
|
# 5. Encoder
|
|
encoder_class = encoder_choices.get_class(args.encoder)
|
|
encoder = encoder_class(input_size=input_size, **args.encoder_conf)
|
|
|
|
# 7. Decoder
|
|
decoder_class = decoder_choices.get_class(args.decoder)
|
|
decoder = decoder_class(
|
|
vocab_size=vocab_size,
|
|
encoder_output_size=encoder.output_size(),
|
|
**args.decoder_conf,
|
|
)
|
|
|
|
# 8. CTC
|
|
ctc = CTC(
|
|
odim=vocab_size, encoder_output_size=encoder.output_size(), **args.ctc_conf
|
|
)
|
|
|
|
|
|
# 10. Build model
|
|
try:
|
|
model_class = model_choices.get_class(args.model)
|
|
except AttributeError:
|
|
model_class = model_choices.get_class("asr")
|
|
|
|
rnnt_decoder = None
|
|
|
|
# 8. Build model
|
|
model = model_class(
|
|
vocab_size=vocab_size,
|
|
frontend=frontend,
|
|
specaug=specaug,
|
|
normalize=normalize,
|
|
preencoder=preencoder,
|
|
encoder=encoder,
|
|
decoder=decoder,
|
|
ctc=ctc,
|
|
rnnt_decoder=rnnt_decoder,
|
|
token_list=token_list,
|
|
**args.model_conf,
|
|
)
|
|
|
|
# 11. Initialize
|
|
if args.init is not None:
|
|
initialize(model, args.init)
|
|
|
|
assert check_return_type(model)
|
|
return model
|
|
|
|
|
|
class ASRTaskAligner(ASRTaskParaformer):
|
|
# If you need more than one optimizers, change this value
|
|
num_optimizers: int = 1
|
|
|
|
# Add variable objects configurations
|
|
class_choices_list = [
|
|
# --frontend and --frontend_conf
|
|
frontend_choices,
|
|
# --model and --model_conf
|
|
model_choices,
|
|
# --encoder and --encoder_conf
|
|
encoder_choices,
|
|
# --decoder and --decoder_conf
|
|
decoder_choices,
|
|
]
|
|
|
|
# If you need to modify train() or eval() procedures, change Trainer class here
|
|
trainer = Trainer
|
|
|
|
@classmethod
|
|
def build_model(cls, args: argparse.Namespace):
|
|
assert check_argument_types()
|
|
if isinstance(args.token_list, str):
|
|
with open(args.token_list, encoding="utf-8") as f:
|
|
token_list = [line.rstrip() for line in f]
|
|
|
|
# Overwriting token_list to keep it as "portable".
|
|
args.token_list = list(token_list)
|
|
elif isinstance(args.token_list, (tuple, list)):
|
|
token_list = list(args.token_list)
|
|
else:
|
|
raise RuntimeError("token_list must be str or list")
|
|
|
|
# 1. frontend
|
|
if args.input_size is None:
|
|
# Extract features in the model
|
|
frontend_class = frontend_choices.get_class(args.frontend)
|
|
if args.frontend == 'wav_frontend':
|
|
frontend = frontend_class(cmvn_file=args.cmvn_file, **args.frontend_conf)
|
|
else:
|
|
frontend = frontend_class(**args.frontend_conf)
|
|
input_size = frontend.output_size()
|
|
else:
|
|
# Give features from data-loader
|
|
args.frontend = None
|
|
args.frontend_conf = {}
|
|
frontend = None
|
|
input_size = args.input_size
|
|
|
|
# 2. Encoder
|
|
encoder_class = encoder_choices.get_class(args.encoder)
|
|
encoder = encoder_class(input_size=input_size, **args.encoder_conf)
|
|
|
|
# 3. Predictor
|
|
predictor_class = predictor_choices.get_class(args.predictor)
|
|
predictor = predictor_class(**args.predictor_conf)
|
|
|
|
# 10. Build model
|
|
try:
|
|
model_class = model_choices.get_class(args.model)
|
|
except AttributeError:
|
|
model_class = model_choices.get_class("asr")
|
|
|
|
# 8. Build model
|
|
model = model_class(
|
|
frontend=frontend,
|
|
encoder=encoder,
|
|
predictor=predictor,
|
|
token_list=token_list,
|
|
**args.model_conf,
|
|
)
|
|
|
|
# 11. Initialize
|
|
if args.init is not None:
|
|
initialize(model, args.init)
|
|
|
|
assert check_return_type(model)
|
|
return model
|
|
|
|
@classmethod
|
|
def required_data_names(
|
|
cls, train: bool = True, inference: bool = False
|
|
) -> Tuple[str, ...]:
|
|
retval = ("speech", "text")
|
|
return retval
|
|
|
|
|
|
class ASRTransducerTask(ASRTask):
|
|
"""ASR Transducer Task definition."""
|
|
|
|
num_optimizers: int = 1
|
|
|
|
class_choices_list = [
|
|
model_choices,
|
|
frontend_choices,
|
|
specaug_choices,
|
|
normalize_choices,
|
|
encoder_choices,
|
|
rnnt_decoder_choices,
|
|
joint_network_choices,
|
|
]
|
|
|
|
trainer = Trainer
|
|
|
|
@classmethod
|
|
def build_model(cls, args: argparse.Namespace) -> TransducerModel:
|
|
"""Required data depending on task mode.
|
|
Args:
|
|
cls: ASRTransducerTask object.
|
|
args: Task arguments.
|
|
Return:
|
|
model: ASR Transducer model.
|
|
"""
|
|
assert check_argument_types()
|
|
|
|
if isinstance(args.token_list, str):
|
|
with open(args.token_list, encoding="utf-8") as f:
|
|
token_list = [line.rstrip() for line in f]
|
|
|
|
# Overwriting token_list to keep it as "portable".
|
|
args.token_list = list(token_list)
|
|
elif isinstance(args.token_list, (tuple, list)):
|
|
token_list = list(args.token_list)
|
|
else:
|
|
raise RuntimeError("token_list must be str or list")
|
|
vocab_size = len(token_list)
|
|
logging.info(f"Vocabulary size: {vocab_size }")
|
|
|
|
# 1. frontend
|
|
if args.input_size is None:
|
|
# Extract features in the model
|
|
frontend_class = frontend_choices.get_class(args.frontend)
|
|
frontend = frontend_class(**args.frontend_conf)
|
|
input_size = frontend.output_size()
|
|
else:
|
|
# Give features from data-loader
|
|
frontend = None
|
|
input_size = args.input_size
|
|
|
|
# 2. Data augmentation for spectrogram
|
|
if args.specaug is not None:
|
|
specaug_class = specaug_choices.get_class(args.specaug)
|
|
specaug = specaug_class(**args.specaug_conf)
|
|
else:
|
|
specaug = None
|
|
|
|
# 3. Normalization layer
|
|
if args.normalize is not None:
|
|
normalize_class = normalize_choices.get_class(args.normalize)
|
|
normalize = normalize_class(**args.normalize_conf)
|
|
else:
|
|
normalize = None
|
|
|
|
# 4. Encoder
|
|
if getattr(args, "encoder", None) is not None:
|
|
encoder_class = encoder_choices.get_class(args.encoder)
|
|
encoder = encoder_class(input_size, **args.encoder_conf)
|
|
else:
|
|
encoder = Encoder(input_size, **args.encoder_conf)
|
|
encoder_output_size = encoder.output_size()
|
|
|
|
# 5. Decoder
|
|
rnnt_decoder_class = rnnt_decoder_choices.get_class(args.rnnt_decoder)
|
|
decoder = rnnt_decoder_class(
|
|
vocab_size,
|
|
**args.rnnt_decoder_conf,
|
|
)
|
|
decoder_output_size = decoder.output_size
|
|
|
|
if getattr(args, "decoder", None) is not None:
|
|
att_decoder_class = decoder_choices.get_class(args.decoder)
|
|
|
|
att_decoder = att_decoder_class(
|
|
vocab_size=vocab_size,
|
|
encoder_output_size=encoder_output_size,
|
|
**args.decoder_conf,
|
|
)
|
|
else:
|
|
att_decoder = None
|
|
# 6. Joint Network
|
|
joint_network = JointNetwork(
|
|
vocab_size,
|
|
encoder_output_size,
|
|
decoder_output_size,
|
|
**args.joint_network_conf,
|
|
)
|
|
|
|
# 7. Build model
|
|
try:
|
|
model_class = model_choices.get_class(args.model)
|
|
except AttributeError:
|
|
model_class = model_choices.get_class("rnnt_unified")
|
|
|
|
model = model_class(
|
|
vocab_size=vocab_size,
|
|
token_list=token_list,
|
|
frontend=frontend,
|
|
specaug=specaug,
|
|
normalize=normalize,
|
|
encoder=encoder,
|
|
decoder=decoder,
|
|
att_decoder=att_decoder,
|
|
joint_network=joint_network,
|
|
**args.model_conf,
|
|
)
|
|
# 8. Initialize model
|
|
if args.init is not None:
|
|
raise NotImplementedError(
|
|
"Currently not supported.",
|
|
"Initialization part will be reworked in a short future.",
|
|
)
|
|
|
|
#assert check_return_type(model)
|
|
|
|
return model
|
|
|
|
|
|
class ASRTaskSAASR(ASRTask):
|
|
# If you need more than one optimizers, change this value
|
|
num_optimizers: int = 1
|
|
|
|
# Add variable objects configurations
|
|
class_choices_list = [
|
|
# --frontend and --frontend_conf
|
|
frontend_choices,
|
|
# --specaug and --specaug_conf
|
|
specaug_choices,
|
|
# --normalize and --normalize_conf
|
|
normalize_choices,
|
|
# --model and --model_conf
|
|
model_choices,
|
|
# --preencoder and --preencoder_conf
|
|
preencoder_choices,
|
|
# --encoder and --encoder_conf
|
|
# --asr_encoder and --asr_encoder_conf
|
|
asr_encoder_choices,
|
|
# --spk_encoder and --spk_encoder_conf
|
|
spk_encoder_choices,
|
|
# --decoder and --decoder_conf
|
|
decoder_choices,
|
|
]
|
|
|
|
# If you need to modify train() or eval() procedures, change Trainer class here
|
|
trainer = Trainer
|
|
|
|
@classmethod
|
|
def build_model(cls, args: argparse.Namespace):
|
|
assert check_argument_types()
|
|
if isinstance(args.token_list, str):
|
|
with open(args.token_list, encoding="utf-8") as f:
|
|
token_list = [line.rstrip() for line in f]
|
|
|
|
# Overwriting token_list to keep it as "portable".
|
|
args.token_list = list(token_list)
|
|
elif isinstance(args.token_list, (tuple, list)):
|
|
token_list = list(args.token_list)
|
|
else:
|
|
raise RuntimeError("token_list must be str or list")
|
|
vocab_size = len(token_list)
|
|
logging.info(f"Vocabulary size: {vocab_size}")
|
|
|
|
# 1. frontend
|
|
if args.input_size is None:
|
|
# Extract features in the model
|
|
frontend_class = frontend_choices.get_class(args.frontend)
|
|
if args.frontend == 'wav_frontend' or args.frontend == "multichannelfrontend":
|
|
frontend = frontend_class(cmvn_file=args.cmvn_file, **args.frontend_conf)
|
|
else:
|
|
frontend = frontend_class(**args.frontend_conf)
|
|
input_size = frontend.output_size()
|
|
else:
|
|
# Give features from data-loader
|
|
args.frontend = None
|
|
args.frontend_conf = {}
|
|
frontend = None
|
|
input_size = args.input_size
|
|
|
|
# 2. Data augmentation for spectrogram
|
|
if args.specaug is not None:
|
|
specaug_class = specaug_choices.get_class(args.specaug)
|
|
specaug = specaug_class(**args.specaug_conf)
|
|
else:
|
|
specaug = None
|
|
|
|
# 3. Normalization layer
|
|
if args.normalize is not None:
|
|
normalize_class = normalize_choices.get_class(args.normalize)
|
|
normalize = normalize_class(**args.normalize_conf)
|
|
else:
|
|
normalize = None
|
|
|
|
# 5. Encoder
|
|
asr_encoder_class = asr_encoder_choices.get_class(args.asr_encoder)
|
|
asr_encoder = asr_encoder_class(input_size=input_size, **args.asr_encoder_conf)
|
|
spk_encoder_class = spk_encoder_choices.get_class(args.spk_encoder)
|
|
spk_encoder = spk_encoder_class(input_size=input_size, **args.spk_encoder_conf)
|
|
|
|
# 7. Decoder
|
|
decoder_class = decoder_choices.get_class(args.decoder)
|
|
decoder = decoder_class(
|
|
vocab_size=vocab_size,
|
|
encoder_output_size=asr_encoder.output_size(),
|
|
**args.decoder_conf,
|
|
)
|
|
|
|
# 8. CTC
|
|
ctc = CTC(
|
|
odim=vocab_size, encoder_output_size=asr_encoder.output_size(), **args.ctc_conf
|
|
)
|
|
|
|
# import ipdb;ipdb.set_trace()
|
|
# 9. Build model
|
|
try:
|
|
model_class = model_choices.get_class(args.model)
|
|
except AttributeError:
|
|
model_class = model_choices.get_class("asr")
|
|
model = model_class(
|
|
vocab_size=vocab_size,
|
|
frontend=frontend,
|
|
specaug=specaug,
|
|
normalize=normalize,
|
|
asr_encoder=asr_encoder,
|
|
spk_encoder=spk_encoder,
|
|
decoder=decoder,
|
|
ctc=ctc,
|
|
token_list=token_list,
|
|
**args.model_conf,
|
|
)
|
|
|
|
# 10. Initialize
|
|
if args.init is not None:
|
|
initialize(model, args.init)
|
|
|
|
assert check_return_type(model)
|
|
return model
|