FunASR/funasr/models/frontend/default.py
yhliang e8528b8f62
Dev lyh (#645)
* update

* update

* fix bug

* fix bug
2023-06-16 20:16:47 +08:00

316 lines
11 KiB
Python

import copy
from typing import Optional
from typing import Tuple
from typing import Union
import logging
import humanfriendly
import numpy as np
import torch
from torch_complex.tensor import ComplexTensor
from typeguard import check_argument_types
from funasr.layers.log_mel import LogMel
from funasr.layers.stft import Stft
from funasr.models.frontend.abs_frontend import AbsFrontend
from funasr.modules.frontends.frontend import Frontend
from funasr.utils.get_default_kwargs import get_default_kwargs
from funasr.modules.nets_utils import make_pad_mask
class DefaultFrontend(AbsFrontend):
"""Conventional frontend structure for ASR.
Stft -> WPE -> MVDR-Beamformer -> Power-spec -> Mel-Fbank -> CMVN
"""
def __init__(
self,
fs: Union[int, str] = 16000,
n_fft: int = 512,
win_length: int = None,
hop_length: int = 128,
window: Optional[str] = "hann",
center: bool = True,
normalized: bool = False,
onesided: bool = True,
n_mels: int = 80,
fmin: int = None,
fmax: int = None,
htk: bool = False,
frontend_conf: Optional[dict] = get_default_kwargs(Frontend),
apply_stft: bool = True,
use_channel: int = None,
):
assert check_argument_types()
super().__init__()
if isinstance(fs, str):
fs = humanfriendly.parse_size(fs)
# Deepcopy (In general, dict shouldn't be used as default arg)
frontend_conf = copy.deepcopy(frontend_conf)
self.hop_length = hop_length
if apply_stft:
self.stft = Stft(
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
center=center,
window=window,
normalized=normalized,
onesided=onesided,
)
else:
self.stft = None
self.apply_stft = apply_stft
if frontend_conf is not None:
self.frontend = Frontend(idim=n_fft // 2 + 1, **frontend_conf)
else:
self.frontend = None
self.logmel = LogMel(
fs=fs,
n_fft=n_fft,
n_mels=n_mels,
fmin=fmin,
fmax=fmax,
htk=htk,
)
self.n_mels = n_mels
self.frontend_type = "default"
self.use_channel = use_channel
def output_size(self) -> int:
return self.n_mels
def forward(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# 1. Domain-conversion: e.g. Stft: time -> time-freq
if self.stft is not None:
input_stft, feats_lens = self._compute_stft(input, input_lengths)
else:
input_stft = ComplexTensor(input[..., 0], input[..., 1])
feats_lens = input_lengths
# 2. [Option] Speech enhancement
if self.frontend is not None:
assert isinstance(input_stft, ComplexTensor), type(input_stft)
# input_stft: (Batch, Length, [Channel], Freq)
input_stft, _, mask = self.frontend(input_stft, feats_lens)
# 3. [Multi channel case]: Select a channel
if input_stft.dim() == 4:
# h: (B, T, C, F) -> h: (B, T, F)
if self.training:
if self.use_channel is not None:
input_stft = input_stft[:, :, self.use_channel, :]
else:
# Select 1ch randomly
ch = np.random.randint(input_stft.size(2))
input_stft = input_stft[:, :, ch, :]
else:
# Use the first channel
input_stft = input_stft[:, :, 0, :]
# 4. STFT -> Power spectrum
# h: ComplexTensor(B, T, F) -> torch.Tensor(B, T, F)
input_power = input_stft.real ** 2 + input_stft.imag ** 2
# 5. Feature transform e.g. Stft -> Log-Mel-Fbank
# input_power: (Batch, [Channel,] Length, Freq)
# -> input_feats: (Batch, Length, Dim)
input_feats, _ = self.logmel(input_power, feats_lens)
return input_feats, feats_lens
def _compute_stft(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> torch.Tensor:
input_stft, feats_lens = self.stft(input, input_lengths)
assert input_stft.dim() >= 4, input_stft.shape
# "2" refers to the real/imag parts of Complex
assert input_stft.shape[-1] == 2, input_stft.shape
# Change torch.Tensor to ComplexTensor
# input_stft: (..., F, 2) -> (..., F)
input_stft = ComplexTensor(input_stft[..., 0], input_stft[..., 1])
return input_stft, feats_lens
class MultiChannelFrontend(AbsFrontend):
"""Conventional frontend structure for ASR.
Stft -> WPE -> MVDR-Beamformer -> Power-spec -> Mel-Fbank -> CMVN
"""
def __init__(
self,
fs: Union[int, str] = 16000,
n_fft: int = 400,
frame_length: int = 25,
frame_shift: int = 10,
window: Optional[str] = "hann",
center: bool = True,
normalized: bool = False,
onesided: bool = True,
n_mels: int = 80,
fmin: int = None,
fmax: int = None,
htk: bool = False,
frontend_conf: Optional[dict] = get_default_kwargs(Frontend),
apply_stft: bool = True,
use_channel: int = None,
lfr_m: int = 1,
lfr_n: int = 1,
cmvn_file: str = None
):
assert check_argument_types()
super().__init__()
if isinstance(fs, str):
fs = humanfriendly.parse_size(fs)
# Deepcopy (In general, dict shouldn't be used as default arg)
frontend_conf = copy.deepcopy(frontend_conf)
self.win_length = frame_length * 16
self.hop_length = frame_shift * 16
if apply_stft:
self.stft = Stft(
n_fft=n_fft,
win_length=self.win_length,
hop_length=self.hop_length,
center=center,
window=window,
normalized=normalized,
onesided=onesided,
)
else:
self.stft = None
self.apply_stft = apply_stft
if frontend_conf is not None:
self.frontend = Frontend(idim=n_fft // 2 + 1, **frontend_conf)
else:
self.frontend = None
self.logmel = LogMel(
fs=fs,
n_fft=n_fft,
n_mels=n_mels,
fmin=fmin,
fmax=fmax,
htk=htk,
)
self.n_mels = n_mels
self.frontend_type = "default"
self.use_channel = use_channel
if self.use_channel is not None:
logging.info("use the channel %d" % (self.use_channel))
else:
logging.info("random select channel")
self.cmvn_file = cmvn_file
if self.cmvn_file is not None:
mean, std = self._load_cmvn(self.cmvn_file)
self.register_buffer("mean", torch.from_numpy(mean))
self.register_buffer("std", torch.from_numpy(std))
def output_size(self) -> int:
return self.n_mels
def forward(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# 1. Domain-conversion: e.g. Stft: time -> time-freq
#import pdb;pdb.set_trace()
if self.stft is not None:
input_stft, feats_lens = self._compute_stft(input, input_lengths)
else:
input_stft = ComplexTensor(input[..., 0], input[..., 1])
feats_lens = input_lengths
# 2. [Option] Speech enhancement
if self.frontend is not None:
assert isinstance(input_stft, ComplexTensor), type(input_stft)
# input_stft: (Batch, Length, [Channel], Freq)
input_stft, _, mask = self.frontend(input_stft, feats_lens)
# 3. [Multi channel case]: Select a channel
if input_stft.dim() == 4:
# h: (B, T, C, F) -> h: (B, T, F)
if self.training:
if self.use_channel is not None:
input_stft = input_stft[:, :, self.use_channel, :]
else:
# Select 1ch randomly
ch = np.random.randint(input_stft.size(2))
input_stft = input_stft[:, :, ch, :]
else:
# Use the first channel
input_stft = input_stft[:, :, 0, :]
# 4. STFT -> Power spectrum
# h: ComplexTensor(B, T, F) -> torch.Tensor(B, T, F)
input_power = input_stft.real ** 2 + input_stft.imag ** 2
# 5. Feature transform e.g. Stft -> Log-Mel-Fbank
# input_power: (Batch, [Channel,] Length, Freq)
# -> input_feats: (Batch, Length, Dim)
input_feats, _ = self.logmel(input_power, feats_lens)
# 6. Apply CMVN
if self.cmvn_file is not None:
if feats_lens is None:
feats_lens = input_feats.new_full([input_feats.size(0)], input_feats.size(1))
self.mean = self.mean.to(input_feats.device, input_feats.dtype)
self.std = self.std.to(input_feats.device, input_feats.dtype)
mask = make_pad_mask(feats_lens, input_feats, 1)
if input_feats.requires_grad:
input_feats = input_feats + self.mean
else:
input_feats += self.mean
if input_feats.requires_grad:
input_feats = input_feats.masked_fill(mask, 0.0)
else:
input_feats.masked_fill_(mask, 0.0)
input_feats *= self.std
return input_feats, feats_lens
def _compute_stft(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> torch.Tensor:
input_stft, feats_lens = self.stft(input, input_lengths)
assert input_stft.dim() >= 4, input_stft.shape
# "2" refers to the real/imag parts of Complex
assert input_stft.shape[-1] == 2, input_stft.shape
# Change torch.Tensor to ComplexTensor
# input_stft: (..., F, 2) -> (..., F)
input_stft = ComplexTensor(input_stft[..., 0], input_stft[..., 1])
return input_stft, feats_lens
def _load_cmvn(self, cmvn_file):
with open(cmvn_file, 'r', encoding='utf-8') as f:
lines = f.readlines()
means_list = []
vars_list = []
for i in range(len(lines)):
line_item = lines[i].split()
if line_item[0] == '<AddShift>':
line_item = lines[i + 1].split()
if line_item[0] == '<LearnRateCoef>':
add_shift_line = line_item[3:(len(line_item) - 1)]
means_list = list(add_shift_line)
continue
elif line_item[0] == '<Rescale>':
line_item = lines[i + 1].split()
if line_item[0] == '<LearnRateCoef>':
rescale_line = line_item[3:(len(line_item) - 1)]
vars_list = list(rescale_line)
continue
means = np.array(means_list).astype(np.float)
vars = np.array(vars_list).astype(np.float)
return means, vars