FunASR/funasr/bin/asr_inference_launch.py
2023-06-19 20:28:23 +08:00

1883 lines
69 KiB
Python

#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import argparse
import logging
import os
import sys
import time
from pathlib import Path
from typing import Dict
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
import numpy as np
import torch
import torchaudio
import yaml
from typeguard import check_argument_types
from funasr.bin.asr_infer import Speech2Text
from funasr.bin.asr_infer import Speech2TextMFCCA
from funasr.bin.asr_infer import Speech2TextParaformer, Speech2TextParaformerOnline
from funasr.bin.asr_infer import Speech2TextSAASR
from funasr.bin.asr_infer import Speech2TextTransducer
from funasr.bin.asr_infer import Speech2TextUniASR
from funasr.bin.punc_infer import Text2Punc
from funasr.bin.tp_infer import Speech2Timestamp
from funasr.bin.vad_infer import Speech2VadSegment
from funasr.build_utils.build_streaming_iterator import build_streaming_iterator
from funasr.fileio.datadir_writer import DatadirWriter
from funasr.modules.beam_search.beam_search import Hypothesis
from funasr.modules.subsampling import TooShortUttError
from funasr.torch_utils.device_funcs import to_device
from funasr.torch_utils.set_all_random_seed import set_all_random_seed
from funasr.utils import asr_utils, postprocess_utils
from funasr.utils import config_argparse
from funasr.utils.cli_utils import get_commandline_args
from funasr.utils.timestamp_tools import time_stamp_sentence, ts_prediction_lfr6_standard
from funasr.utils.types import str2bool
from funasr.utils.types import str2triple_str
from funasr.utils.types import str_or_none
from funasr.utils.vad_utils import slice_padding_fbank
def inference_asr(
maxlenratio: float,
minlenratio: float,
batch_size: int,
beam_size: int,
ngpu: int,
ctc_weight: float,
lm_weight: float,
penalty: float,
log_level: Union[int, str],
# data_path_and_name_and_type,
asr_train_config: Optional[str],
asr_model_file: Optional[str],
cmvn_file: Optional[str] = None,
lm_train_config: Optional[str] = None,
lm_file: Optional[str] = None,
token_type: Optional[str] = None,
key_file: Optional[str] = None,
word_lm_train_config: Optional[str] = None,
bpemodel: Optional[str] = None,
allow_variable_data_keys: bool = False,
streaming: bool = False,
output_dir: Optional[str] = None,
dtype: str = "float32",
seed: int = 0,
ngram_weight: float = 0.9,
nbest: int = 1,
num_workers: int = 1,
mc: bool = False,
param_dict: dict = None,
**kwargs,
):
assert check_argument_types()
ncpu = kwargs.get("ncpu", 1)
torch.set_num_threads(ncpu)
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if word_lm_train_config is not None:
raise NotImplementedError("Word LM is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1 and torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build speech2text
speech2text_kwargs = dict(
asr_train_config=asr_train_config,
asr_model_file=asr_model_file,
cmvn_file=cmvn_file,
lm_train_config=lm_train_config,
lm_file=lm_file,
token_type=token_type,
bpemodel=bpemodel,
device=device,
maxlenratio=maxlenratio,
minlenratio=minlenratio,
dtype=dtype,
beam_size=beam_size,
ctc_weight=ctc_weight,
lm_weight=lm_weight,
ngram_weight=ngram_weight,
penalty=penalty,
nbest=nbest,
streaming=streaming,
)
logging.info("speech2text_kwargs: {}".format(speech2text_kwargs))
speech2text = Speech2Text(**speech2text_kwargs)
def _forward(data_path_and_name_and_type,
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
output_dir_v2: Optional[str] = None,
fs: dict = None,
param_dict: dict = None,
**kwargs,
):
# 3. Build data-iterator
if data_path_and_name_and_type is None and raw_inputs is not None:
if isinstance(raw_inputs, torch.Tensor):
raw_inputs = raw_inputs.numpy()
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
loader = build_streaming_iterator(
task_name="asr",
preprocess_args=speech2text.asr_train_args,
data_path_and_name_and_type=data_path_and_name_and_type,
dtype=dtype,
fs=fs,
mc=mc,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
)
finish_count = 0
file_count = 1
# 7 .Start for-loop
# FIXME(kamo): The output format should be discussed about
asr_result_list = []
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
if output_path is not None:
writer = DatadirWriter(output_path)
else:
writer = None
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
# batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
# N-best list of (text, token, token_int, hyp_object)
try:
results = speech2text(**batch)
except TooShortUttError as e:
logging.warning(f"Utterance {keys} {e}")
hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
results = [[" ", ["sil"], [2], hyp]] * nbest
# Only supporting batch_size==1
key = keys[0]
for n, (text, token, token_int, hyp) in zip(range(1, nbest + 1), results):
# Create a directory: outdir/{n}best_recog
if writer is not None:
ibest_writer = writer[f"{n}best_recog"]
# Write the result to each file
ibest_writer["token"][key] = " ".join(token)
ibest_writer["token_int"][key] = " ".join(map(str, token_int))
ibest_writer["score"][key] = str(hyp.score)
if text is not None:
text_postprocessed, _ = postprocess_utils.sentence_postprocess(token)
item = {'key': key, 'value': text_postprocessed}
asr_result_list.append(item)
finish_count += 1
asr_utils.print_progress(finish_count / file_count)
if writer is not None:
ibest_writer["text"][key] = text
logging.info("uttid: {}".format(key))
logging.info("text predictions: {}\n".format(text))
return asr_result_list
return _forward
def inference_paraformer(
maxlenratio: float,
minlenratio: float,
batch_size: int,
beam_size: int,
ngpu: int,
ctc_weight: float,
lm_weight: float,
penalty: float,
log_level: Union[int, str],
# data_path_and_name_and_type,
asr_train_config: Optional[str],
asr_model_file: Optional[str],
cmvn_file: Optional[str] = None,
lm_train_config: Optional[str] = None,
lm_file: Optional[str] = None,
token_type: Optional[str] = None,
key_file: Optional[str] = None,
word_lm_train_config: Optional[str] = None,
bpemodel: Optional[str] = None,
allow_variable_data_keys: bool = False,
dtype: str = "float32",
seed: int = 0,
ngram_weight: float = 0.9,
nbest: int = 1,
num_workers: int = 1,
output_dir: Optional[str] = None,
timestamp_infer_config: Union[Path, str] = None,
timestamp_model_file: Union[Path, str] = None,
param_dict: dict = None,
**kwargs,
):
assert check_argument_types()
ncpu = kwargs.get("ncpu", 1)
torch.set_num_threads(ncpu)
if word_lm_train_config is not None:
raise NotImplementedError("Word LM is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
export_mode = False
if param_dict is not None:
hotword_list_or_file = param_dict.get('hotword')
export_mode = param_dict.get("export_mode", False)
else:
hotword_list_or_file = None
if kwargs.get("device", None) == "cpu":
ngpu = 0
if ngpu >= 1 and torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
batch_size = 1
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build speech2text
speech2text_kwargs = dict(
asr_train_config=asr_train_config,
asr_model_file=asr_model_file,
cmvn_file=cmvn_file,
lm_train_config=lm_train_config,
lm_file=lm_file,
token_type=token_type,
bpemodel=bpemodel,
device=device,
maxlenratio=maxlenratio,
minlenratio=minlenratio,
dtype=dtype,
beam_size=beam_size,
ctc_weight=ctc_weight,
lm_weight=lm_weight,
ngram_weight=ngram_weight,
penalty=penalty,
nbest=nbest,
hotword_list_or_file=hotword_list_or_file,
)
speech2text = Speech2TextParaformer(**speech2text_kwargs)
if timestamp_model_file is not None:
speechtext2timestamp = Speech2Timestamp(
timestamp_cmvn_file=cmvn_file,
timestamp_model_file=timestamp_model_file,
timestamp_infer_config=timestamp_infer_config,
)
else:
speechtext2timestamp = None
def _forward(
data_path_and_name_and_type,
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
output_dir_v2: Optional[str] = None,
fs: dict = None,
param_dict: dict = None,
**kwargs,
):
hotword_list_or_file = None
if param_dict is not None:
hotword_list_or_file = param_dict.get('hotword')
if 'hotword' in kwargs and kwargs['hotword'] is not None:
hotword_list_or_file = kwargs['hotword']
if hotword_list_or_file is not None or 'hotword' in kwargs:
speech2text.hotword_list = speech2text.generate_hotwords_list(hotword_list_or_file)
# 3. Build data-iterator
if data_path_and_name_and_type is None and raw_inputs is not None:
if isinstance(raw_inputs, torch.Tensor):
raw_inputs = raw_inputs.numpy()
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
loader = build_streaming_iterator(
task_name="asr",
preprocess_args=speech2text.asr_train_args,
data_path_and_name_and_type=data_path_and_name_and_type,
dtype=dtype,
fs=fs,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
)
if param_dict is not None:
use_timestamp = param_dict.get('use_timestamp', True)
else:
use_timestamp = True
forward_time_total = 0.0
length_total = 0.0
finish_count = 0
file_count = 1
# 7 .Start for-loop
# FIXME(kamo): The output format should be discussed about
asr_result_list = []
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
if output_path is not None:
writer = DatadirWriter(output_path)
else:
writer = None
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
# batch = {k: v for k, v in batch.items() if not k.endswith("_lengths")}
logging.info("decoding, utt_id: {}".format(keys))
# N-best list of (text, token, token_int, hyp_object)
time_beg = time.time()
results = speech2text(**batch)
if len(results) < 1:
hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
results = [[" ", ["sil"], [2], hyp, 10, 6]] * nbest
time_end = time.time()
forward_time = time_end - time_beg
lfr_factor = results[0][-1]
length = results[0][-2]
forward_time_total += forward_time
length_total += length
rtf_cur = "decoding, feature length: {}, forward_time: {:.4f}, rtf: {:.4f}".format(length, forward_time,
100 * forward_time / (
length * lfr_factor))
logging.info(rtf_cur)
for batch_id in range(_bs):
result = [results[batch_id][:-2]]
key = keys[batch_id]
for n, result in zip(range(1, nbest + 1), result):
text, token, token_int, hyp = result[0], result[1], result[2], result[3]
timestamp = result[4] if len(result[4]) > 0 else None
# conduct timestamp prediction here
# timestamp inference requires token length
# thus following inference cannot be conducted in batch
if timestamp is None and speechtext2timestamp:
ts_batch = {}
ts_batch['speech'] = batch['speech'][batch_id].unsqueeze(0)
ts_batch['speech_lengths'] = torch.tensor([batch['speech_lengths'][batch_id]])
ts_batch['text_lengths'] = torch.tensor([len(token)])
us_alphas, us_peaks = speechtext2timestamp(**ts_batch)
ts_str, timestamp = ts_prediction_lfr6_standard(us_alphas[0], us_peaks[0], token,
force_time_shift=-3.0)
# Create a directory: outdir/{n}best_recog
if writer is not None:
ibest_writer = writer[f"{n}best_recog"]
# Write the result to each file
ibest_writer["token"][key] = " ".join(token)
# ibest_writer["token_int"][key] = " ".join(map(str, token_int))
ibest_writer["score"][key] = str(hyp.score)
ibest_writer["rtf"][key] = rtf_cur
if text is not None:
if use_timestamp and timestamp is not None:
postprocessed_result = postprocess_utils.sentence_postprocess(token, timestamp)
else:
postprocessed_result = postprocess_utils.sentence_postprocess(token)
timestamp_postprocessed = ""
if len(postprocessed_result) == 3:
text_postprocessed, timestamp_postprocessed, word_lists = postprocessed_result[0], \
postprocessed_result[1], \
postprocessed_result[2]
else:
text_postprocessed, word_lists = postprocessed_result[0], postprocessed_result[1]
item = {'key': key, 'value': text_postprocessed}
if timestamp_postprocessed != "":
item['timestamp'] = timestamp_postprocessed
asr_result_list.append(item)
finish_count += 1
# asr_utils.print_progress(finish_count / file_count)
if writer is not None:
ibest_writer["text"][key] = " ".join(word_lists)
logging.info("decoding, utt: {}, predictions: {}".format(key, text))
rtf_avg = "decoding, feature length total: {}, forward_time total: {:.4f}, rtf avg: {:.4f}".format(length_total,
forward_time_total,
100 * forward_time_total / (
length_total * lfr_factor))
logging.info(rtf_avg)
if writer is not None:
ibest_writer["rtf"]["rtf_avf"] = rtf_avg
return asr_result_list
return _forward
def inference_paraformer_vad_punc(
maxlenratio: float,
minlenratio: float,
batch_size: int,
beam_size: int,
ngpu: int,
ctc_weight: float,
lm_weight: float,
penalty: float,
log_level: Union[int, str],
# data_path_and_name_and_type,
asr_train_config: Optional[str],
asr_model_file: Optional[str],
cmvn_file: Optional[str] = None,
lm_train_config: Optional[str] = None,
lm_file: Optional[str] = None,
token_type: Optional[str] = None,
key_file: Optional[str] = None,
word_lm_train_config: Optional[str] = None,
bpemodel: Optional[str] = None,
allow_variable_data_keys: bool = False,
output_dir: Optional[str] = None,
dtype: str = "float32",
seed: int = 0,
ngram_weight: float = 0.9,
nbest: int = 1,
num_workers: int = 1,
vad_infer_config: Optional[str] = None,
vad_model_file: Optional[str] = None,
vad_cmvn_file: Optional[str] = None,
time_stamp_writer: bool = True,
punc_infer_config: Optional[str] = None,
punc_model_file: Optional[str] = None,
outputs_dict: Optional[bool] = True,
param_dict: dict = None,
**kwargs,
):
assert check_argument_types()
ncpu = kwargs.get("ncpu", 1)
torch.set_num_threads(ncpu)
if word_lm_train_config is not None:
raise NotImplementedError("Word LM is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if param_dict is not None:
hotword_list_or_file = param_dict.get('hotword')
else:
hotword_list_or_file = None
if ngpu >= 1 and torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build speech2vadsegment
speech2vadsegment_kwargs = dict(
vad_infer_config=vad_infer_config,
vad_model_file=vad_model_file,
vad_cmvn_file=vad_cmvn_file,
device=device,
dtype=dtype,
)
# logging.info("speech2vadsegment_kwargs: {}".format(speech2vadsegment_kwargs))
speech2vadsegment = Speech2VadSegment(**speech2vadsegment_kwargs)
# 3. Build speech2text
speech2text_kwargs = dict(
asr_train_config=asr_train_config,
asr_model_file=asr_model_file,
cmvn_file=cmvn_file,
lm_train_config=lm_train_config,
lm_file=lm_file,
token_type=token_type,
bpemodel=bpemodel,
device=device,
maxlenratio=maxlenratio,
minlenratio=minlenratio,
dtype=dtype,
beam_size=beam_size,
ctc_weight=ctc_weight,
lm_weight=lm_weight,
ngram_weight=ngram_weight,
penalty=penalty,
nbest=nbest,
hotword_list_or_file=hotword_list_or_file,
)
speech2text = Speech2TextParaformer(**speech2text_kwargs)
text2punc = None
if punc_model_file is not None:
text2punc = Text2Punc(punc_infer_config, punc_model_file, device=device, dtype=dtype)
if output_dir is not None:
writer = DatadirWriter(output_dir)
ibest_writer = writer[f"1best_recog"]
ibest_writer["token_list"][""] = " ".join(speech2text.asr_train_args.token_list)
def _forward(data_path_and_name_and_type,
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
output_dir_v2: Optional[str] = None,
fs: dict = None,
param_dict: dict = None,
**kwargs,
):
hotword_list_or_file = None
if param_dict is not None:
hotword_list_or_file = param_dict.get('hotword')
if 'hotword' in kwargs:
hotword_list_or_file = kwargs['hotword']
batch_size_token = kwargs.get("batch_size_token", 6000)
print("batch_size_token: ", batch_size_token)
if speech2text.hotword_list is None:
speech2text.hotword_list = speech2text.generate_hotwords_list(hotword_list_or_file)
# 3. Build data-iterator
if data_path_and_name_and_type is None and raw_inputs is not None:
if isinstance(raw_inputs, torch.Tensor):
raw_inputs = raw_inputs.numpy()
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
loader = build_streaming_iterator(
task_name="asr",
preprocess_args=None,
data_path_and_name_and_type=data_path_and_name_and_type,
dtype=dtype,
fs=fs,
batch_size=1,
key_file=key_file,
num_workers=num_workers,
)
if param_dict is not None:
use_timestamp = param_dict.get('use_timestamp', True)
else:
use_timestamp = True
finish_count = 0
file_count = 1
lfr_factor = 6
# 7 .Start for-loop
asr_result_list = []
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
writer = None
if output_path is not None:
writer = DatadirWriter(output_path)
ibest_writer = writer[f"1best_recog"]
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
beg_vad = time.time()
vad_results = speech2vadsegment(**batch)
end_vad = time.time()
print("time cost vad: ", end_vad - beg_vad)
_, vadsegments = vad_results[0], vad_results[1][0]
speech, speech_lengths = batch["speech"], batch["speech_lengths"]
n = len(vadsegments)
data_with_index = [(vadsegments[i], i) for i in range(n)]
sorted_data = sorted(data_with_index, key=lambda x: x[0][1] - x[0][0])
results_sorted = []
batch_size_token_ms = batch_size_token*60
if speech2text.device == "cpu":
batch_size_token_ms = 0
batch_size_token_ms = max(batch_size_token_ms, sorted_data[0][0][1] - sorted_data[0][0][0])
batch_size_token_ms_cum = 0
beg_idx = 0
for j, _ in enumerate(range(0, n)):
batch_size_token_ms_cum += (sorted_data[j][0][1] - sorted_data[j][0][0])
if j < n - 1 and (batch_size_token_ms_cum + sorted_data[j + 1][0][1] - sorted_data[j + 1][0][
0]) < batch_size_token_ms:
continue
batch_size_token_ms_cum = 0
end_idx = j + 1
speech_j, speech_lengths_j = slice_padding_fbank(speech, speech_lengths, sorted_data[beg_idx:end_idx])
beg_idx = end_idx
batch = {"speech": speech_j, "speech_lengths": speech_lengths_j}
batch = to_device(batch, device=device)
print("batch: ", speech_j.shape[0])
beg_asr = time.time()
results = speech2text(**batch)
end_asr = time.time()
print("time cost asr: ", end_asr - beg_asr)
if len(results) < 1:
results = [["", [], [], [], [], [], []]]
results_sorted.extend(results)
restored_data = [0] * n
for j in range(n):
index = sorted_data[j][1]
restored_data[index] = results_sorted[j]
result = ["", [], [], [], [], [], []]
for j in range(n):
result[0] += restored_data[j][0]
result[1] += restored_data[j][1]
result[2] += restored_data[j][2]
if len(restored_data[j][4]) > 0:
for t in restored_data[j][4]:
t[0] += vadsegments[j][0]
t[1] += vadsegments[j][0]
result[4] += restored_data[j][4]
# result = [result[k]+restored_data[j][k] for k in range(len(result[:-2]))]
key = keys[0]
# result = result_segments[0]
text, token, token_int = result[0], result[1], result[2]
time_stamp = result[4] if len(result[4]) > 0 else None
if use_timestamp and time_stamp is not None:
postprocessed_result = postprocess_utils.sentence_postprocess(token, time_stamp)
else:
postprocessed_result = postprocess_utils.sentence_postprocess(token)
text_postprocessed = ""
time_stamp_postprocessed = ""
text_postprocessed_punc = postprocessed_result
if len(postprocessed_result) == 3:
text_postprocessed, time_stamp_postprocessed, word_lists = postprocessed_result[0], \
postprocessed_result[1], \
postprocessed_result[2]
else:
text_postprocessed, word_lists = postprocessed_result[0], postprocessed_result[1]
text_postprocessed_punc = text_postprocessed
punc_id_list = []
if len(word_lists) > 0 and text2punc is not None:
beg_punc = time.time()
text_postprocessed_punc, punc_id_list = text2punc(word_lists, 20)
end_punc = time.time()
print("time cost punc: ", end_punc - beg_punc)
item = {'key': key, 'value': text_postprocessed_punc}
if text_postprocessed != "":
item['text_postprocessed'] = text_postprocessed
if time_stamp_postprocessed != "":
item['time_stamp'] = time_stamp_postprocessed
item['sentences'] = time_stamp_sentence(punc_id_list, time_stamp_postprocessed, text_postprocessed)
asr_result_list.append(item)
finish_count += 1
# asr_utils.print_progress(finish_count / file_count)
if writer is not None:
# Write the result to each file
ibest_writer["token"][key] = " ".join(token)
ibest_writer["token_int"][key] = " ".join(map(str, token_int))
ibest_writer["vad"][key] = "{}".format(vadsegments)
ibest_writer["text"][key] = " ".join(word_lists)
ibest_writer["text_with_punc"][key] = text_postprocessed_punc
if time_stamp_postprocessed is not None:
ibest_writer["time_stamp"][key] = "{}".format(time_stamp_postprocessed)
logging.info("decoding, utt: {}, predictions: {}".format(key, text_postprocessed_punc))
return asr_result_list
return _forward
def inference_paraformer_online(
maxlenratio: float,
minlenratio: float,
batch_size: int,
beam_size: int,
ngpu: int,
ctc_weight: float,
lm_weight: float,
penalty: float,
log_level: Union[int, str],
# data_path_and_name_and_type,
asr_train_config: Optional[str],
asr_model_file: Optional[str],
cmvn_file: Optional[str] = None,
lm_train_config: Optional[str] = None,
lm_file: Optional[str] = None,
token_type: Optional[str] = None,
key_file: Optional[str] = None,
word_lm_train_config: Optional[str] = None,
bpemodel: Optional[str] = None,
allow_variable_data_keys: bool = False,
dtype: str = "float32",
seed: int = 0,
ngram_weight: float = 0.9,
nbest: int = 1,
num_workers: int = 1,
output_dir: Optional[str] = None,
param_dict: dict = None,
**kwargs,
):
assert check_argument_types()
if word_lm_train_config is not None:
raise NotImplementedError("Word LM is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
export_mode = False
if ngpu >= 1 and torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
batch_size = 1
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build speech2text
speech2text_kwargs = dict(
asr_train_config=asr_train_config,
asr_model_file=asr_model_file,
cmvn_file=cmvn_file,
lm_train_config=lm_train_config,
lm_file=lm_file,
token_type=token_type,
bpemodel=bpemodel,
device=device,
maxlenratio=maxlenratio,
minlenratio=minlenratio,
dtype=dtype,
beam_size=beam_size,
ctc_weight=ctc_weight,
lm_weight=lm_weight,
ngram_weight=ngram_weight,
penalty=penalty,
nbest=nbest,
)
speech2text = Speech2TextParaformerOnline(**speech2text_kwargs)
def _load_bytes(input):
middle_data = np.frombuffer(input, dtype=np.int16)
middle_data = np.asarray(middle_data)
if middle_data.dtype.kind not in 'iu':
raise TypeError("'middle_data' must be an array of integers")
dtype = np.dtype('float32')
if dtype.kind != 'f':
raise TypeError("'dtype' must be a floating point type")
i = np.iinfo(middle_data.dtype)
abs_max = 2 ** (i.bits - 1)
offset = i.min + abs_max
array = np.frombuffer((middle_data.astype(dtype) - offset) / abs_max, dtype=np.float32)
return array
def _read_yaml(yaml_path: Union[str, Path]) -> Dict:
if not Path(yaml_path).exists():
raise FileExistsError(f'The {yaml_path} does not exist.')
with open(str(yaml_path), 'rb') as f:
data = yaml.load(f, Loader=yaml.Loader)
return data
def _prepare_cache(cache: dict = {}, chunk_size=[5, 10, 5], batch_size=1):
if len(cache) > 0:
return cache
config = _read_yaml(asr_train_config)
enc_output_size = config["encoder_conf"]["output_size"]
feats_dims = config["frontend_conf"]["n_mels"] * config["frontend_conf"]["lfr_m"]
cache_en = {"start_idx": 0, "cif_hidden": torch.zeros((batch_size, 1, enc_output_size)),
"cif_alphas": torch.zeros((batch_size, 1)), "chunk_size": chunk_size, "last_chunk": False,
"feats": torch.zeros((batch_size, chunk_size[0] + chunk_size[2], feats_dims)), "tail_chunk": False}
cache["encoder"] = cache_en
cache_de = {"decode_fsmn": None}
cache["decoder"] = cache_de
return cache
def _cache_reset(cache: dict = {}, chunk_size=[5, 10, 5], batch_size=1):
if len(cache) > 0:
config = _read_yaml(asr_train_config)
enc_output_size = config["encoder_conf"]["output_size"]
feats_dims = config["frontend_conf"]["n_mels"] * config["frontend_conf"]["lfr_m"]
cache_en = {"start_idx": 0, "cif_hidden": torch.zeros((batch_size, 1, enc_output_size)),
"cif_alphas": torch.zeros((batch_size, 1)), "chunk_size": chunk_size, "last_chunk": False,
"feats": torch.zeros((batch_size, chunk_size[0] + chunk_size[2], feats_dims)),
"tail_chunk": False}
cache["encoder"] = cache_en
cache_de = {"decode_fsmn": None}
cache["decoder"] = cache_de
return cache
def _forward(
data_path_and_name_and_type,
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
output_dir_v2: Optional[str] = None,
fs: dict = None,
param_dict: dict = None,
**kwargs,
):
# 3. Build data-iterator
if data_path_and_name_and_type is not None and data_path_and_name_and_type[2] == "bytes":
raw_inputs = _load_bytes(data_path_and_name_and_type[0])
raw_inputs = torch.tensor(raw_inputs)
if data_path_and_name_and_type is not None and data_path_and_name_and_type[2] == "sound":
raw_inputs = torchaudio.load(data_path_and_name_and_type[0])[0][0]
if data_path_and_name_and_type is None and raw_inputs is not None:
if isinstance(raw_inputs, np.ndarray):
raw_inputs = torch.tensor(raw_inputs)
is_final = False
cache = {}
chunk_size = [5, 10, 5]
if param_dict is not None and "cache" in param_dict:
cache = param_dict["cache"]
if param_dict is not None and "is_final" in param_dict:
is_final = param_dict["is_final"]
if param_dict is not None and "chunk_size" in param_dict:
chunk_size = param_dict["chunk_size"]
# 7 .Start for-loop
# FIXME(kamo): The output format should be discussed about
raw_inputs = torch.unsqueeze(raw_inputs, axis=0)
asr_result_list = []
cache = _prepare_cache(cache, chunk_size=chunk_size, batch_size=1)
item = {}
if data_path_and_name_and_type is not None and data_path_and_name_and_type[2] == "sound":
sample_offset = 0
speech_length = raw_inputs.shape[1]
stride_size = chunk_size[1] * 960
cache = _prepare_cache(cache, chunk_size=chunk_size, batch_size=1)
final_result = ""
for sample_offset in range(0, speech_length, min(stride_size, speech_length - sample_offset)):
if sample_offset + stride_size >= speech_length - 1:
stride_size = speech_length - sample_offset
cache["encoder"]["is_final"] = True
else:
cache["encoder"]["is_final"] = False
input_lens = torch.tensor([stride_size])
asr_result = speech2text(cache, raw_inputs[:, sample_offset: sample_offset + stride_size], input_lens)
if len(asr_result) != 0:
final_result += " ".join(asr_result) + " "
item = {'key': "utt", 'value': final_result.strip()}
else:
input_lens = torch.tensor([raw_inputs.shape[1]])
cache["encoder"]["is_final"] = is_final
asr_result = speech2text(cache, raw_inputs, input_lens)
item = {'key': "utt", 'value': " ".join(asr_result)}
asr_result_list.append(item)
if is_final:
cache = _cache_reset(cache, chunk_size=chunk_size, batch_size=1)
return asr_result_list
return _forward
def inference_uniasr(
maxlenratio: float,
minlenratio: float,
batch_size: int,
beam_size: int,
ngpu: int,
ctc_weight: float,
lm_weight: float,
penalty: float,
log_level: Union[int, str],
# data_path_and_name_and_type,
asr_train_config: Optional[str],
asr_model_file: Optional[str],
ngram_file: Optional[str] = None,
cmvn_file: Optional[str] = None,
# raw_inputs: Union[np.ndarray, torch.Tensor] = None,
lm_train_config: Optional[str] = None,
lm_file: Optional[str] = None,
token_type: Optional[str] = None,
key_file: Optional[str] = None,
word_lm_train_config: Optional[str] = None,
bpemodel: Optional[str] = None,
allow_variable_data_keys: bool = False,
streaming: bool = False,
output_dir: Optional[str] = None,
dtype: str = "float32",
seed: int = 0,
ngram_weight: float = 0.9,
nbest: int = 1,
num_workers: int = 1,
token_num_relax: int = 1,
decoding_ind: int = 0,
decoding_mode: str = "model1",
param_dict: dict = None,
**kwargs,
):
assert check_argument_types()
ncpu = kwargs.get("ncpu", 1)
torch.set_num_threads(ncpu)
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if word_lm_train_config is not None:
raise NotImplementedError("Word LM is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1 and torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
if param_dict is not None and "decoding_model" in param_dict:
if param_dict["decoding_model"] == "fast":
decoding_ind = 0
decoding_mode = "model1"
elif param_dict["decoding_model"] == "normal":
decoding_ind = 0
decoding_mode = "model2"
elif param_dict["decoding_model"] == "offline":
decoding_ind = 1
decoding_mode = "model2"
else:
raise NotImplementedError("unsupported decoding model {}".format(param_dict["decoding_model"]))
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build speech2text
speech2text_kwargs = dict(
asr_train_config=asr_train_config,
asr_model_file=asr_model_file,
cmvn_file=cmvn_file,
lm_train_config=lm_train_config,
lm_file=lm_file,
ngram_file=ngram_file,
token_type=token_type,
bpemodel=bpemodel,
device=device,
maxlenratio=maxlenratio,
minlenratio=minlenratio,
dtype=dtype,
beam_size=beam_size,
ctc_weight=ctc_weight,
lm_weight=lm_weight,
ngram_weight=ngram_weight,
penalty=penalty,
nbest=nbest,
streaming=streaming,
token_num_relax=token_num_relax,
decoding_ind=decoding_ind,
decoding_mode=decoding_mode,
)
speech2text = Speech2TextUniASR(**speech2text_kwargs)
def _forward(data_path_and_name_and_type,
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
output_dir_v2: Optional[str] = None,
fs: dict = None,
param_dict: dict = None,
**kwargs,
):
# 3. Build data-iterator
if data_path_and_name_and_type is None and raw_inputs is not None:
if isinstance(raw_inputs, torch.Tensor):
raw_inputs = raw_inputs.numpy()
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
loader = build_streaming_iterator(
task_name="asr",
preprocess_args=speech2text.asr_train_args,
data_path_and_name_and_type=data_path_and_name_and_type,
dtype=dtype,
fs=fs,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
)
finish_count = 0
file_count = 1
# 7 .Start for-loop
# FIXME(kamo): The output format should be discussed about
asr_result_list = []
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
if output_path is not None:
writer = DatadirWriter(output_path)
else:
writer = None
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
# batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
# N-best list of (text, token, token_int, hyp_object)
try:
results = speech2text(**batch)
except TooShortUttError as e:
logging.warning(f"Utterance {keys} {e}")
hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
results = [[" ", ["sil"], [2], hyp]] * nbest
# Only supporting batch_size==1
key = keys[0]
logging.info(f"Utterance: {key}")
for n, (text, token, token_int, hyp) in zip(range(1, nbest + 1), results):
# Create a directory: outdir/{n}best_recog
if writer is not None:
ibest_writer = writer[f"{n}best_recog"]
# Write the result to each file
ibest_writer["token"][key] = " ".join(token)
# ibest_writer["token_int"][key] = " ".join(map(str, token_int))
ibest_writer["score"][key] = str(hyp.score)
if text is not None:
text_postprocessed, word_lists = postprocess_utils.sentence_postprocess(token)
item = {'key': key, 'value': text_postprocessed}
asr_result_list.append(item)
finish_count += 1
asr_utils.print_progress(finish_count / file_count)
if writer is not None:
ibest_writer["text"][key] = " ".join(word_lists)
return asr_result_list
return _forward
def inference_mfcca(
maxlenratio: float,
minlenratio: float,
batch_size: int,
beam_size: int,
ngpu: int,
ctc_weight: float,
lm_weight: float,
penalty: float,
log_level: Union[int, str],
# data_path_and_name_and_type,
asr_train_config: Optional[str],
asr_model_file: Optional[str],
cmvn_file: Optional[str] = None,
lm_train_config: Optional[str] = None,
lm_file: Optional[str] = None,
token_type: Optional[str] = None,
key_file: Optional[str] = None,
word_lm_train_config: Optional[str] = None,
bpemodel: Optional[str] = None,
allow_variable_data_keys: bool = False,
streaming: bool = False,
output_dir: Optional[str] = None,
dtype: str = "float32",
seed: int = 0,
ngram_weight: float = 0.9,
nbest: int = 1,
num_workers: int = 1,
param_dict: dict = None,
**kwargs,
):
assert check_argument_types()
ncpu = kwargs.get("ncpu", 1)
torch.set_num_threads(ncpu)
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if word_lm_train_config is not None:
raise NotImplementedError("Word LM is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1 and torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build speech2text
speech2text_kwargs = dict(
asr_train_config=asr_train_config,
asr_model_file=asr_model_file,
cmvn_file=cmvn_file,
lm_train_config=lm_train_config,
lm_file=lm_file,
token_type=token_type,
bpemodel=bpemodel,
device=device,
maxlenratio=maxlenratio,
minlenratio=minlenratio,
dtype=dtype,
beam_size=beam_size,
ctc_weight=ctc_weight,
lm_weight=lm_weight,
ngram_weight=ngram_weight,
penalty=penalty,
nbest=nbest,
streaming=streaming,
)
logging.info("speech2text_kwargs: {}".format(speech2text_kwargs))
speech2text = Speech2TextMFCCA(**speech2text_kwargs)
def _forward(data_path_and_name_and_type,
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
output_dir_v2: Optional[str] = None,
fs: dict = None,
param_dict: dict = None,
**kwargs,
):
# 3. Build data-iterator
if data_path_and_name_and_type is None and raw_inputs is not None:
if isinstance(raw_inputs, torch.Tensor):
raw_inputs = raw_inputs.numpy()
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
loader = build_streaming_iterator(
task_name="asr",
preprocess_args=speech2text.asr_train_args,
data_path_and_name_and_type=data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
fs=fs,
mc=True,
key_file=key_file,
num_workers=num_workers,
)
finish_count = 0
file_count = 1
# 7 .Start for-loop
# FIXME(kamo): The output format should be discussed about
asr_result_list = []
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
if output_path is not None:
writer = DatadirWriter(output_path)
else:
writer = None
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
# batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
# N-best list of (text, token, token_int, hyp_object)
try:
results = speech2text(**batch)
except TooShortUttError as e:
logging.warning(f"Utterance {keys} {e}")
hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
results = [[" ", ["<space>"], [2], hyp]] * nbest
# Only supporting batch_size==1
key = keys[0]
for n, (text, token, token_int, hyp) in zip(range(1, nbest + 1), results):
# Create a directory: outdir/{n}best_recog
if writer is not None:
ibest_writer = writer[f"{n}best_recog"]
# Write the result to each file
ibest_writer["token"][key] = " ".join(token)
# ibest_writer["token_int"][key] = " ".join(map(str, token_int))
ibest_writer["score"][key] = str(hyp.score)
if text is not None:
text_postprocessed = postprocess_utils.sentence_postprocess(token)
item = {'key': key, 'value': text_postprocessed}
asr_result_list.append(item)
finish_count += 1
asr_utils.print_progress(finish_count / file_count)
if writer is not None:
ibest_writer["text"][key] = text
return asr_result_list
return _forward
def inference_transducer(
output_dir: str,
batch_size: int,
dtype: str,
beam_size: int,
ngpu: int,
seed: int,
lm_weight: float,
nbest: int,
num_workers: int,
log_level: Union[int, str],
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
asr_train_config: Optional[str],
asr_model_file: Optional[str],
cmvn_file: Optional[str],
beam_search_config: Optional[dict],
lm_train_config: Optional[str],
lm_file: Optional[str],
model_tag: Optional[str],
token_type: Optional[str],
bpemodel: Optional[str],
key_file: Optional[str],
allow_variable_data_keys: bool,
quantize_asr_model: Optional[bool],
quantize_modules: Optional[List[str]],
quantize_dtype: Optional[str],
streaming: Optional[bool],
simu_streaming: Optional[bool],
chunk_size: Optional[int],
left_context: Optional[int],
right_context: Optional[int],
display_partial_hypotheses: bool,
**kwargs,
) -> None:
"""Transducer model inference.
Args:
output_dir: Output directory path.
batch_size: Batch decoding size.
dtype: Data type.
beam_size: Beam size.
ngpu: Number of GPUs.
seed: Random number generator seed.
lm_weight: Weight of language model.
nbest: Number of final hypothesis.
num_workers: Number of workers.
log_level: Level of verbose for logs.
data_path_and_name_and_type:
asr_train_config: ASR model training config path.
asr_model_file: ASR model path.
beam_search_config: Beam search config path.
lm_train_config: Language Model training config path.
lm_file: Language Model path.
model_tag: Model tag.
token_type: Type of token units.
bpemodel: BPE model path.
key_file: File key.
allow_variable_data_keys: Whether to allow variable data keys.
quantize_asr_model: Whether to apply dynamic quantization to ASR model.
quantize_modules: List of module names to apply dynamic quantization on.
quantize_dtype: Dynamic quantization data type.
streaming: Whether to perform chunk-by-chunk inference.
chunk_size: Number of frames in chunk AFTER subsampling.
left_context: Number of frames in left context AFTER subsampling.
right_context: Number of frames in right context AFTER subsampling.
display_partial_hypotheses: Whether to display partial hypotheses.
"""
assert check_argument_types()
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1:
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build speech2text
speech2text_kwargs = dict(
asr_train_config=asr_train_config,
asr_model_file=asr_model_file,
cmvn_file=cmvn_file,
beam_search_config=beam_search_config,
lm_train_config=lm_train_config,
lm_file=lm_file,
token_type=token_type,
bpemodel=bpemodel,
device=device,
dtype=dtype,
beam_size=beam_size,
lm_weight=lm_weight,
nbest=nbest,
quantize_asr_model=quantize_asr_model,
quantize_modules=quantize_modules,
quantize_dtype=quantize_dtype,
streaming=streaming,
simu_streaming=simu_streaming,
chunk_size=chunk_size,
left_context=left_context,
right_context=right_context,
)
speech2text = Speech2TextTransducer.from_pretrained(
model_tag=model_tag,
**speech2text_kwargs,
)
def _forward(data_path_and_name_and_type,
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
output_dir_v2: Optional[str] = None,
fs: dict = None,
param_dict: dict = None,
**kwargs,
):
# 3. Build data-iterator
loader = build_streaming_iterator(
task_name="asr",
preprocess_args=speech2text.asr_train_args,
data_path_and_name_and_type=data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
)
# 4 .Start for-loop
with DatadirWriter(output_dir) as writer:
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
assert len(batch.keys()) == 1
try:
if speech2text.streaming:
speech = batch["speech"]
_steps = len(speech) // speech2text._ctx
_end = 0
for i in range(_steps):
_end = (i + 1) * speech2text._ctx
speech2text.streaming_decode(
speech[i * speech2text._ctx: _end], is_final=False
)
final_hyps = speech2text.streaming_decode(
speech[_end: len(speech)], is_final=True
)
elif speech2text.simu_streaming:
final_hyps = speech2text.simu_streaming_decode(**batch)
else:
final_hyps = speech2text(**batch)
results = speech2text.hypotheses_to_results(final_hyps)
except TooShortUttError as e:
logging.warning(f"Utterance {keys} {e}")
hyp = Hypothesis(score=0.0, yseq=[], dec_state=None)
results = [[" ", ["<space>"], [2], hyp]] * nbest
key = keys[0]
for n, (text, token, token_int, hyp) in zip(range(1, nbest + 1), results):
ibest_writer = writer[f"{n}best_recog"]
ibest_writer["token"][key] = " ".join(token)
ibest_writer["token_int"][key] = " ".join(map(str, token_int))
ibest_writer["score"][key] = str(hyp.score)
if text is not None:
ibest_writer["text"][key] = text
return _forward
def inference_sa_asr(
maxlenratio: float,
minlenratio: float,
batch_size: int,
beam_size: int,
ngpu: int,
ctc_weight: float,
lm_weight: float,
penalty: float,
log_level: Union[int, str],
# data_path_and_name_and_type,
asr_train_config: Optional[str],
asr_model_file: Optional[str],
cmvn_file: Optional[str] = None,
lm_train_config: Optional[str] = None,
lm_file: Optional[str] = None,
token_type: Optional[str] = None,
key_file: Optional[str] = None,
word_lm_train_config: Optional[str] = None,
bpemodel: Optional[str] = None,
allow_variable_data_keys: bool = False,
streaming: bool = False,
output_dir: Optional[str] = None,
dtype: str = "float32",
seed: int = 0,
ngram_weight: float = 0.9,
nbest: int = 1,
num_workers: int = 1,
mc: bool = False,
param_dict: dict = None,
**kwargs,
):
assert check_argument_types()
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if word_lm_train_config is not None:
raise NotImplementedError("Word LM is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1 and torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build speech2text
speech2text_kwargs = dict(
asr_train_config=asr_train_config,
asr_model_file=asr_model_file,
cmvn_file=cmvn_file,
lm_train_config=lm_train_config,
lm_file=lm_file,
token_type=token_type,
bpemodel=bpemodel,
device=device,
maxlenratio=maxlenratio,
minlenratio=minlenratio,
dtype=dtype,
beam_size=beam_size,
ctc_weight=ctc_weight,
lm_weight=lm_weight,
ngram_weight=ngram_weight,
penalty=penalty,
nbest=nbest,
streaming=streaming,
)
logging.info("speech2text_kwargs: {}".format(speech2text_kwargs))
speech2text = Speech2TextSAASR(**speech2text_kwargs)
def _forward(data_path_and_name_and_type,
raw_inputs: Union[np.ndarray, torch.Tensor] = None,
output_dir_v2: Optional[str] = None,
fs: dict = None,
param_dict: dict = None,
**kwargs,
):
# 3. Build data-iterator
if data_path_and_name_and_type is None and raw_inputs is not None:
if isinstance(raw_inputs, torch.Tensor):
raw_inputs = raw_inputs.numpy()
data_path_and_name_and_type = [raw_inputs, "speech", "waveform"]
loader = build_streaming_iterator(
task_name="asr",
preprocess_args=speech2text.asr_train_args,
data_path_and_name_and_type=data_path_and_name_and_type,
dtype=dtype,
fs=fs,
mc=mc,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
)
finish_count = 0
file_count = 1
# 7 .Start for-loop
# FIXME(kamo): The output format should be discussed about
asr_result_list = []
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
if output_path is not None:
writer = DatadirWriter(output_path)
else:
writer = None
for keys, batch in loader:
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
# batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
# N-best list of (text, token, token_int, hyp_object)
try:
results = speech2text(**batch)
except TooShortUttError as e:
logging.warning(f"Utterance {keys} {e}")
hyp = Hypothesis(score=0.0, scores={}, states={}, yseq=[])
results = [[" ", ["sil"], [2], hyp]] * nbest
# Only supporting batch_size==1
key = keys[0]
for n, (text, text_id, token, token_int, hyp) in zip(range(1, nbest + 1), results):
# Create a directory: outdir/{n}best_recog
if writer is not None:
ibest_writer = writer[f"{n}best_recog"]
# Write the result to each file
ibest_writer["token"][key] = " ".join(token)
ibest_writer["token_int"][key] = " ".join(map(str, token_int))
ibest_writer["score"][key] = str(hyp.score)
ibest_writer["text_id"][key] = text_id
if text is not None:
text_postprocessed, _ = postprocess_utils.sentence_postprocess(token)
item = {'key': key, 'value': text_postprocessed}
asr_result_list.append(item)
finish_count += 1
asr_utils.print_progress(finish_count / file_count)
if writer is not None:
ibest_writer["text"][key] = text
logging.info("uttid: {}".format(key))
logging.info("text predictions: {}".format(text))
logging.info("text_id predictions: {}\n".format(text_id))
return asr_result_list
return _forward
def inference_launch(**kwargs):
if 'mode' in kwargs:
mode = kwargs['mode']
else:
logging.info("Unknown decoding mode.")
return None
if mode == "asr":
return inference_asr(**kwargs)
elif mode == "uniasr":
return inference_uniasr(**kwargs)
elif mode == "paraformer":
return inference_paraformer(**kwargs)
elif mode == "paraformer_fake_streaming":
return inference_paraformer(**kwargs)
elif mode == "paraformer_streaming":
return inference_paraformer_online(**kwargs)
elif mode.startswith("paraformer_vad"):
return inference_paraformer_vad_punc(**kwargs)
elif mode == "mfcca":
return inference_mfcca(**kwargs)
elif mode == "rnnt":
return inference_transducer(**kwargs)
elif mode == "sa_asr":
return inference_sa_asr(**kwargs)
else:
logging.info("Unknown decoding mode: {}".format(mode))
return None
def get_parser():
parser = config_argparse.ArgumentParser(
description="ASR Decoding",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use '_' instead of '-' as separator.
# '-' is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument(
"--njob",
type=int,
default=1,
help="The number of jobs for each gpu",
)
parser.add_argument(
"--gpuid_list",
type=str,
default="",
help="The visible gpus",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument("--key_file", type=str_or_none)
parser.add_argument(
"--hotword",
type=str_or_none,
default=None,
help="hotword file path or hotwords seperated by space"
)
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
group.add_argument(
"--mc",
type=bool,
default=False,
help="MultiChannel input",
)
group = parser.add_argument_group("The model configuration related")
group.add_argument(
"--vad_infer_config",
type=str,
help="VAD infer configuration",
)
group.add_argument(
"--vad_model_file",
type=str,
help="VAD model parameter file",
)
group.add_argument(
"--cmvn_file",
type=str,
help="Global CMVN file",
)
group.add_argument(
"--asr_train_config",
type=str,
help="ASR training configuration",
)
group.add_argument(
"--asr_model_file",
type=str,
help="ASR model parameter file",
)
group.add_argument(
"--lm_train_config",
type=str,
help="LM training configuration",
)
group.add_argument(
"--lm_file",
type=str,
help="LM parameter file",
)
group.add_argument(
"--word_lm_train_config",
type=str,
help="Word LM training configuration",
)
group.add_argument(
"--word_lm_file",
type=str,
help="Word LM parameter file",
)
group.add_argument(
"--ngram_file",
type=str,
help="N-gram parameter file",
)
group.add_argument(
"--model_tag",
type=str,
help="Pretrained model tag. If specify this option, *_train_config and "
"*_file will be overwritten",
)
group.add_argument(
"--beam_search_config",
default={},
help="The keyword arguments for transducer beam search.",
)
group = parser.add_argument_group("Beam-search related")
group.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
group.add_argument("--nbest", type=int, default=5, help="Output N-best hypotheses")
group.add_argument("--beam_size", type=int, default=20, help="Beam size")
group.add_argument("--penalty", type=float, default=0.0, help="Insertion penalty")
group.add_argument(
"--maxlenratio",
type=float,
default=0.0,
help="Input length ratio to obtain max output length. "
"If maxlenratio=0.0 (default), it uses a end-detect "
"function "
"to automatically find maximum hypothesis lengths."
"If maxlenratio<0.0, its absolute value is interpreted"
"as a constant max output length",
)
group.add_argument(
"--minlenratio",
type=float,
default=0.0,
help="Input length ratio to obtain min output length",
)
group.add_argument(
"--ctc_weight",
type=float,
default=0.0,
help="CTC weight in joint decoding",
)
group.add_argument("--lm_weight", type=float, default=1.0, help="RNNLM weight")
group.add_argument("--ngram_weight", type=float, default=0.9, help="ngram weight")
group.add_argument("--streaming", type=str2bool, default=False)
group.add_argument("--simu_streaming", type=str2bool, default=False)
group.add_argument("--chunk_size", type=int, default=16)
group.add_argument("--left_context", type=int, default=16)
group.add_argument("--right_context", type=int, default=0)
group.add_argument(
"--display_partial_hypotheses",
type=bool,
default=False,
help="Whether to display partial hypotheses during chunk-by-chunk inference.",
)
group = parser.add_argument_group("Dynamic quantization related")
group.add_argument(
"--quantize_asr_model",
type=bool,
default=False,
help="Apply dynamic quantization to ASR model.",
)
group.add_argument(
"--quantize_modules",
nargs="*",
default=None,
help="""Module names to apply dynamic quantization on.
The module names are provided as a list, where each name is separated
by a comma (e.g.: --quantize-config=[Linear,LSTM,GRU]).
Each specified name should be an attribute of 'torch.nn', e.g.:
torch.nn.Linear, torch.nn.LSTM, torch.nn.GRU, ...""",
)
group.add_argument(
"--quantize_dtype",
type=str,
default="qint8",
choices=["float16", "qint8"],
help="Dtype for dynamic quantization.",
)
group = parser.add_argument_group("Text converter related")
group.add_argument(
"--token_type",
type=str_or_none,
default=None,
choices=["char", "bpe", None],
help="The token type for ASR model. "
"If not given, refers from the training args",
)
group.add_argument(
"--bpemodel",
type=str_or_none,
default=None,
help="The model path of sentencepiece. "
"If not given, refers from the training args",
)
group.add_argument("--token_num_relax", type=int, default=1, help="")
group.add_argument("--decoding_ind", type=int, default=0, help="")
group.add_argument("--decoding_mode", type=str, default="model1", help="")
group.add_argument(
"--ctc_weight2",
type=float,
default=0.0,
help="CTC weight in joint decoding",
)
return parser
def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
parser.add_argument(
"--mode",
type=str,
default="asr",
help="The decoding mode",
)
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
# set logging messages
logging.basicConfig(
level=args.log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.info("Decoding args: {}".format(kwargs))
# gpu setting
if args.ngpu > 0:
jobid = int(args.output_dir.split(".")[-1])
gpuid = args.gpuid_list.split(",")[(jobid - 1) // args.njob]
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = gpuid
inference_pipeline = inference_launch(**kwargs)
return inference_pipeline(kwargs["data_path_and_name_and_type"], hotword=kwargs.get("hotword", None))
if __name__ == "__main__":
main()