mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
436 lines
19 KiB
Bash
Executable File
436 lines
19 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
|
|
. ./path.sh || exit 1;
|
|
|
|
# machines configuration
|
|
CUDA_VISIBLE_DEVICES="6,7"
|
|
gpu_num=2
|
|
count=1
|
|
gpu_inference=true # Whether to perform gpu decoding, set false for cpu decoding
|
|
# for gpu decoding, inference_nj=ngpu*njob; for cpu decoding, inference_nj=njob
|
|
njob=8
|
|
train_cmd=utils/run.pl
|
|
infer_cmd=utils/run.pl
|
|
|
|
# general configuration
|
|
feats_dir="data" #feature output dictionary
|
|
exp_dir="exp"
|
|
lang=zh
|
|
token_type=char
|
|
type=sound
|
|
scp=wav.scp
|
|
speed_perturb="1.0"
|
|
min_wav_duration=0.1
|
|
max_wav_duration=20
|
|
profile_modes="cluster oracle"
|
|
stage=7
|
|
stop_stage=7
|
|
|
|
# feature configuration
|
|
feats_dim=80
|
|
nj=32
|
|
|
|
# data
|
|
raw_data=
|
|
data_url=
|
|
|
|
# exp tag
|
|
tag=""
|
|
|
|
. utils/parse_options.sh || exit 1;
|
|
|
|
# Set bash to 'debug' mode, it will exit on :
|
|
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
|
|
set -e
|
|
set -u
|
|
set -o pipefail
|
|
|
|
train_set=Train_Ali_far
|
|
valid_set=Eval_Ali_far
|
|
test_sets="Test_Ali_far Eval_Ali_far"
|
|
test_2023="Test_2023_Ali_far_release"
|
|
|
|
asr_config=conf/train_asr_conformer.yaml
|
|
sa_asr_config=conf/train_sa_asr_conformer.yaml
|
|
asr_model_dir="baseline_$(basename "${asr_config}" .yaml)_${lang}_${token_type}_${tag}"
|
|
sa_asr_model_dir="baseline_$(basename "${sa_asr_config}" .yaml)_${lang}_${token_type}_${tag}"
|
|
inference_config=conf/decode_asr_rnn.yaml
|
|
inference_sa_asr_model=valid.acc_spk.ave.pb
|
|
|
|
# you can set gpu num for decoding here
|
|
gpuid_list=$CUDA_VISIBLE_DEVICES # set gpus for decoding, the same as training stage by default
|
|
ngpu=$(echo $gpuid_list | awk -F "," '{print NF}')
|
|
|
|
if ${gpu_inference}; then
|
|
inference_nj=$[${ngpu}*${njob}]
|
|
_ngpu=1
|
|
else
|
|
inference_nj=$njob
|
|
_ngpu=0
|
|
fi
|
|
|
|
|
|
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
|
echo "stage 0: Data preparation"
|
|
# Data preparation
|
|
./local/alimeeting_data_prep.sh --tgt Test --min_wav_duration $min_wav_duration --max_wav_duration $max_wav_duration
|
|
./local/alimeeting_data_prep.sh --tgt Eval --min_wav_duration $min_wav_duration --max_wav_duration $max_wav_duration
|
|
./local/alimeeting_data_prep.sh --tgt Train --min_wav_duration $min_wav_duration --max_wav_duration $max_wav_duration
|
|
# remove long/short data
|
|
for x in ${train_set} ${valid_set} ${test_sets}; do
|
|
cp -r ${feats_dir}/org/${x} ${feats_dir}/${x}
|
|
rm ${feats_dir}/"${x}"/wav.scp ${feats_dir}/"${x}"/segments
|
|
local/format_wav_scp.sh --nj "${nj}" --cmd "${train_cmd}" \
|
|
--audio-format wav --segments ${feats_dir}/org/${x}/segments \
|
|
"${feats_dir}/org/${x}/${scp}" "${feats_dir}/${x}"
|
|
_min_length=$(python3 -c "print(int(${min_wav_duration} * 16000))")
|
|
_max_length=$(python3 -c "print(int(${max_wav_duration} * 16000))")
|
|
<"${feats_dir}/${x}/utt2num_samples" \
|
|
awk '{if($2 > '$_min_length' && $2 < '$_max_length')print $0;}' \
|
|
>"${feats_dir}/${x}/utt2num_samples_rmls"
|
|
mv ${feats_dir}/${x}/utt2num_samples_rmls ${feats_dir}/${x}/utt2num_samples
|
|
<"${feats_dir}/${x}/wav.scp" \
|
|
utils/filter_scp.pl "${feats_dir}/${x}/utt2num_samples" \
|
|
>"${feats_dir}/${x}/wav.scp_rmls"
|
|
mv ${feats_dir}/${x}/wav.scp_rmls ${feats_dir}/${x}/wav.scp
|
|
<"${feats_dir}/${x}/text" \
|
|
awk '{ if( NF != 1 ) print $0; }' >"${feats_dir}/${x}/text_rmblank"
|
|
mv ${feats_dir}/${x}/text_rmblank ${feats_dir}/${x}/text
|
|
local/fix_${feats_dir}_dir.sh "${feats_dir}/${x}"
|
|
<"${feats_dir}/${x}/utt2spk_all_fifo" \
|
|
utils/filter_scp.pl "${feats_dir}/${x}/text" \
|
|
>"${feats_dir}/${x}/utt2spk_all_fifo_rmls"
|
|
mv "${feats_dir}/${x}/utt2spk_all_fifo_rmls" "${feats_dir}/${x}/utt2spk_all_fifo"
|
|
done
|
|
for x in ${test_2023}; do
|
|
local/format_wav_scp.sh --nj "${nj}" --cmd "${train_cmd}" \
|
|
--audio-format wav --segments ${feats_dir}/org/${x}/segments \
|
|
"${feats_dir}/org/${x}/${scp}" "${feats_dir}/${x}"
|
|
cut -d " " -f1 ${feats_dir}/${x}/wav.scp > ${feats_dir}/${x}/uttid
|
|
paste -d " " ${feats_dir}/${x}/uttid ${feats_dir}/${x}/uttid > ${feats_dir}/${x}/utt2spk
|
|
cp ${feats_dir}/${x}/utt2spk ${feats_dir}/${x}/spk2utt
|
|
done
|
|
fi
|
|
|
|
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
|
echo "stage 1: Speaker profile and CMVN Generation"
|
|
|
|
mkdir -p "profile_log"
|
|
for x in "${train_set}" "${valid_set}" "${test_sets}"; do
|
|
# generate text_id spk2id
|
|
python local/process_sot_fifo_textchar2spk.py --path ${feats_dir}/${x}
|
|
echo "Successfully generate ${feats_dir}/${x}/text_id ${feats_dir}/${x}/spk2id"
|
|
# generate text_id_train for sot
|
|
python local/process_text_id.py ${feats_dir}/${x}
|
|
echo "Successfully generate ${feats_dir}/${x}/text_id_train"
|
|
# generate oracle_embedding from single-speaker audio segment
|
|
echo "oracle_embedding is being generated in the background, and the log is profile_log/gen_oracle_embedding_${x}.log"
|
|
python local/gen_oracle_embedding.py "${feats_dir}/${x}" "data/org/${x}_single_speaker" &> "profile_log/gen_oracle_embedding_${x}.log"
|
|
echo "Successfully generate oracle embedding for ${x} (${feats_dir}/${x}/oracle_embedding.scp)"
|
|
# generate oracle_profile and cluster_profile from oracle_embedding and cluster_embedding (padding the speaker during training)
|
|
if [ "${x}" = "${train_set}" ]; then
|
|
python local/gen_oracle_profile_padding.py ${feats_dir}/${x}
|
|
echo "Successfully generate oracle profile for ${x} (${feats_dir}/${x}/oracle_profile_padding.scp)"
|
|
else
|
|
python local/gen_oracle_profile_nopadding.py ${feats_dir}/${x}
|
|
echo "Successfully generate oracle profile for ${x} (${feats_dir}/${x}/oracle_profile_nopadding.scp)"
|
|
fi
|
|
# generate cluster_profile with spectral-cluster directly (for infering and without oracle information)
|
|
if [ "${x}" = "${valid_set}" ] || [ "${x}" = "${test_sets}" ]; then
|
|
echo "cluster_profile is being generated in the background, and the log is profile_log/gen_cluster_profile_infer_${x}.log"
|
|
python local/gen_cluster_profile_infer.py "${feats_dir}/${x}" "${feats_dir}/org/${x}" 0.996 0.815 &> "profile_log/gen_cluster_profile_infer_${x}.log"
|
|
echo "Successfully generate cluster profile for ${x} (${feats_dir}/${x}/cluster_profile_infer.scp)"
|
|
fi
|
|
# compute CMVN
|
|
if [ "${x}" = "${train_set}" ]; then
|
|
local/compute_cmvn.sh --cmd "$train_cmd" --nj $nj --fbankdir ${feats_dir}/${train_set} --feats_dim ${feats_dim} --config_file "$asr_config" --scale 1.0
|
|
fi
|
|
done
|
|
|
|
for x in "${test_2023}"; do
|
|
# generate cluster_profile with spectral-cluster directly (for infering and without oracle information)
|
|
python local/gen_cluster_profile_infer.py "${feats_dir}/${x}" "${feats_dir}/org/${x}" 0.996 0.815 &> "profile_log/gen_cluster_profile_infer_${x}.log"
|
|
echo "Successfully generate cluster profile for ${x} (${feats_dir}/${x}/cluster_profile_infer.scp)"
|
|
done
|
|
fi
|
|
|
|
token_list=${feats_dir}/${lang}_token_list/char/tokens.txt
|
|
echo "dictionary: ${token_list}"
|
|
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
|
echo "stage 2: Dictionary Preparation"
|
|
mkdir -p ${feats_dir}/${lang}_token_list/char/
|
|
|
|
echo "make a dictionary"
|
|
echo "<blank>" > ${token_list}
|
|
echo "<s>" >> ${token_list}
|
|
echo "</s>" >> ${token_list}
|
|
utils/text2token.py -s 1 -n 1 --space "" ${feats_dir}/$train_set/text | cut -f 2- -d" " | tr " " "\n" \
|
|
| sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0}' >> ${token_list}
|
|
echo "<unk>" >> ${token_list}
|
|
fi
|
|
|
|
# LM Training Stage
|
|
world_size=$gpu_num # run on one machine
|
|
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
|
echo "stage 3: LM Training"
|
|
fi
|
|
|
|
# ASR Training Stage
|
|
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
|
echo "Stage 4: ASR Training"
|
|
asr_exp=${exp_dir}/${asr_model_dir}
|
|
mkdir -p ${asr_exp}
|
|
mkdir -p ${asr_exp}/log
|
|
INIT_FILE=${asr_exp}/ddp_init
|
|
if [ -f $INIT_FILE ];then
|
|
rm -f $INIT_FILE
|
|
fi
|
|
init_method=file://$(readlink -f $INIT_FILE)
|
|
echo "$0: init method is $init_method"
|
|
for ((i = 0; i < $ngpu; ++i)); do
|
|
{
|
|
# i=0
|
|
rank=$i
|
|
local_rank=$i
|
|
gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
|
|
train.py \
|
|
--task_name asr \
|
|
--model asr \
|
|
--gpu_id $gpu_id \
|
|
--use_preprocessor true \
|
|
--split_with_space false \
|
|
--token_type char \
|
|
--token_list $token_list \
|
|
--data_dir ${feats_dir} \
|
|
--train_set ${train_set} \
|
|
--valid_set ${valid_set} \
|
|
--data_file_names "wav.scp,text" \
|
|
--cmvn_file ${feats_dir}/${train_set}/cmvn/cmvn.mvn \
|
|
--speed_perturb ${speed_perturb} \
|
|
--resume true \
|
|
--output_dir ${exp_dir}/${asr_model_dir} \
|
|
--config $asr_config \
|
|
--ngpu $gpu_num \
|
|
--num_worker_count $count \
|
|
--dist_init_method $init_method \
|
|
--dist_world_size $world_size \
|
|
--dist_rank $rank \
|
|
--local_rank $local_rank 1> ${exp_dir}/${asr_model_dir}/log/train.log.$i 2>&1
|
|
} &
|
|
done
|
|
wait
|
|
|
|
fi
|
|
|
|
|
|
|
|
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
|
|
echo "SA-ASR training"
|
|
asr_exp=${exp_dir}/${asr_model_dir}
|
|
sa_asr_exp=${exp_dir}/${sa_asr_model_dir}
|
|
mkdir -p ${sa_asr_exp}
|
|
mkdir -p ${sa_asr_exp}/log
|
|
INIT_FILE=${sa_asr_exp}/ddp_init
|
|
if [ ! -L ${feats_dir}/${train_set}/profile.scp ]; then
|
|
ln -sr ${feats_dir}/${train_set}/oracle_profile_padding.scp ${feats_dir}/${train_set}/profile.scp
|
|
ln -sr ${feats_dir}/${valid_set}/oracle_profile_nopadding.scp ${feats_dir}/${valid_set}/profile.scp
|
|
fi
|
|
|
|
if [ ! -f "${exp_dir}/damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch/sv.pth" ]; then
|
|
# download xvector extractor model file
|
|
python local/download_xvector_model.py ${exp_dir}
|
|
echo "Successfully download the pretrained xvector extractor to exp/damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch/sv.pth"
|
|
fi
|
|
|
|
if [ -f $INIT_FILE ];then
|
|
rm -f $INIT_FILE
|
|
fi
|
|
init_method=file://$(readlink -f $INIT_FILE)
|
|
echo "$0: init method is $init_method"
|
|
for ((i = 0; i < $ngpu; ++i)); do
|
|
{
|
|
rank=$i
|
|
local_rank=$i
|
|
gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
|
|
train.py \
|
|
--task_name asr \
|
|
--model sa_asr \
|
|
--gpu_id $gpu_id \
|
|
--use_preprocessor true \
|
|
--split_with_space false \
|
|
--unused_parameters true \
|
|
--token_type char \
|
|
--resume true \
|
|
--token_list $token_list \
|
|
--data_dir ${feats_dir} \
|
|
--train_set ${train_set} \
|
|
--valid_set ${valid_set} \
|
|
--data_file_names "wav.scp,text,profile.scp,text_id_train" \
|
|
--cmvn_file ${feats_dir}/${train_set}/cmvn/cmvn.mvn \
|
|
--speed_perturb ${speed_perturb} \
|
|
--init_param "${asr_exp}/valid.acc.ave.pb:encoder:asr_encoder" \
|
|
--init_param "${asr_exp}/valid.acc.ave.pb:ctc:ctc" \
|
|
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.embed:decoder.embed" \
|
|
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.output_layer:decoder.asr_output_layer" \
|
|
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.decoders.0.self_attn:decoder.decoder1.self_attn" \
|
|
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.decoders.0.src_attn:decoder.decoder3.src_attn" \
|
|
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.decoders.0.feed_forward:decoder.decoder3.feed_forward" \
|
|
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.decoders.1:decoder.decoder4.0" \
|
|
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.decoders.2:decoder.decoder4.1" \
|
|
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.decoders.3:decoder.decoder4.2" \
|
|
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.decoders.4:decoder.decoder4.3" \
|
|
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.decoders.5:decoder.decoder4.4" \
|
|
--init_param "exp/damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch/sv.pth:encoder:spk_encoder" \
|
|
--init_param "exp/damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch/sv.pth:decoder:spk_encoder:decoder.output_dense" \
|
|
--output_dir ${exp_dir}/${sa_asr_model_dir} \
|
|
--config $sa_asr_config \
|
|
--ngpu $gpu_num \
|
|
--num_worker_count $count \
|
|
--dist_init_method $init_method \
|
|
--dist_world_size $world_size \
|
|
--dist_rank $rank \
|
|
--local_rank $local_rank 1> ${exp_dir}/${sa_asr_model_dir}/log/train.log.$i 2>&1
|
|
} &
|
|
done
|
|
wait
|
|
fi
|
|
|
|
|
|
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
|
|
echo "stage 6: Inference test sets"
|
|
for x in ${test_sets}; do
|
|
for profile_mode in ${profile_modes}; do
|
|
echo "decoding ${x} with ${profile_mode} profile"
|
|
sa_asr_exp=${exp_dir}/${sa_asr_model_dir}
|
|
inference_tag="$(basename "${inference_config}" .yaml)"
|
|
_dir="${sa_asr_exp}/${inference_tag}_${profile_mode}/${inference_sa_asr_model}/${x}"
|
|
_logdir="${_dir}/logdir"
|
|
if [ -d ${_dir} ]; then
|
|
echo "${_dir} is already exists. if you want to decode again, please delete this dir first."
|
|
exit 0
|
|
fi
|
|
mkdir -p "${_logdir}"
|
|
_data="${feats_dir}/${x}"
|
|
key_file=${_data}/${scp}
|
|
num_scp_file="$(<${key_file} wc -l)"
|
|
_nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file")
|
|
split_scps=
|
|
for n in $(seq "${_nj}"); do
|
|
split_scps+=" ${_logdir}/keys.${n}.scp"
|
|
done
|
|
# shellcheck disable=SC2086
|
|
utils/split_scp.pl "${key_file}" ${split_scps}
|
|
_opts=
|
|
if [ -n "${inference_config}" ]; then
|
|
_opts+="--config ${inference_config} "
|
|
fi
|
|
if [ $profile_mode = "oracle" ]; then
|
|
profile_scp=${profile_mode}_profile_nopadding.scp
|
|
else
|
|
profile_scp=${profile_mode}_profile_infer.scp
|
|
fi
|
|
${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/asr_inference.JOB.log \
|
|
python -m funasr.bin.asr_inference_launch \
|
|
--batch_size 1 \
|
|
--mc True \
|
|
--ngpu "${_ngpu}" \
|
|
--njob ${njob} \
|
|
--nbest 1 \
|
|
--gpuid_list ${gpuid_list} \
|
|
--allow_variable_data_keys true \
|
|
--cmvn_file ${feats_dir}/${train_set}/cmvn/cmvn.mvn \
|
|
--data_path_and_name_and_type "${_data}/${scp},speech,${type}" \
|
|
--data_path_and_name_and_type "${_data}/$profile_scp,profile,npy" \
|
|
--key_file "${_logdir}"/keys.JOB.scp \
|
|
--asr_train_config "${sa_asr_exp}"/config.yaml \
|
|
--asr_model_file "${sa_asr_exp}"/"${inference_sa_asr_model}" \
|
|
--output_dir "${_logdir}"/output.JOB \
|
|
--mode sa_asr \
|
|
${_opts}
|
|
|
|
for f in token token_int score text text_id; do
|
|
if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then
|
|
for i in $(seq "${_nj}"); do
|
|
cat "${_logdir}/output.${i}/1best_recog/${f}"
|
|
done | sort -k1 >"${_dir}/${f}"
|
|
fi
|
|
done
|
|
sed 's/\$//g' ${_data}/text > ${_data}/text_nosrc
|
|
sed 's/\$//g' ${_dir}/text > ${_dir}/text_nosrc
|
|
python utils/proce_text.py ${_data}/text_nosrc ${_data}/text.proc
|
|
python utils/proce_text.py ${_dir}/text_nosrc ${_dir}/text.proc
|
|
|
|
python utils/compute_wer.py ${_data}/text.proc ${_dir}/text.proc ${_dir}/text.cer
|
|
tail -n 3 ${_dir}/text.cer > ${_dir}/text.cer.txt
|
|
cat ${_dir}/text.cer.txt
|
|
|
|
python local/process_text_spk_merge.py ${_dir}
|
|
python local/process_text_spk_merge.py ${_data}
|
|
|
|
python local/compute_cpcer.py ${_data}/text_spk_merge ${_dir}/text_spk_merge ${_dir}/text.cpcer
|
|
tail -n 1 ${_dir}/text.cpcer > ${_dir}/text.cpcer.txt
|
|
cat ${_dir}/text.cpcer.txt
|
|
done
|
|
done
|
|
fi
|
|
|
|
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
|
|
echo "stage 7: Inference test 2023"
|
|
for x in ${test_2023}; do
|
|
sa_asr_exp=${exp_dir}/${sa_asr_model_dir}
|
|
inference_tag="$(basename "${inference_config}" .yaml)"
|
|
_dir="${sa_asr_exp}/${inference_tag}_cluster/${inference_sa_asr_model}/${x}"
|
|
_logdir="${_dir}/logdir"
|
|
if [ -d ${_dir} ]; then
|
|
echo "${_dir} is already exists. if you want to decode again, please delete this dir first."
|
|
exit 0
|
|
fi
|
|
mkdir -p "${_logdir}"
|
|
_data="${feats_dir}/${x}"
|
|
key_file=${_data}/${scp}
|
|
num_scp_file="$(<${key_file} wc -l)"
|
|
_nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file")
|
|
split_scps=
|
|
for n in $(seq "${_nj}"); do
|
|
split_scps+=" ${_logdir}/keys.${n}.scp"
|
|
done
|
|
# shellcheck disable=SC2086
|
|
utils/split_scp.pl "${key_file}" ${split_scps}
|
|
_opts=
|
|
if [ -n "${inference_config}" ]; then
|
|
_opts+="--config ${inference_config} "
|
|
fi
|
|
${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/asr_inference.JOB.log \
|
|
python -m funasr.bin.asr_inference_launch \
|
|
--batch_size 1 \
|
|
--mc True \
|
|
--ngpu "${_ngpu}" \
|
|
--njob ${njob} \
|
|
--nbest 1 \
|
|
--gpuid_list ${gpuid_list} \
|
|
--allow_variable_data_keys true \
|
|
--data_path_and_name_and_type "${_data}/${scp},speech,${type}" \
|
|
--data_path_and_name_and_type "${_data}/cluster_profile_infer.scp,profile,npy" \
|
|
--cmvn_file ${feats_dir}/${train_set}/cmvn/cmvn.mvn \
|
|
--key_file "${_logdir}"/keys.JOB.scp \
|
|
--asr_train_config "${sa_asr_exp}"/config.yaml \
|
|
--asr_model_file "${sa_asr_exp}"/"${inference_sa_asr_model}" \
|
|
--output_dir "${_logdir}"/output.JOB \
|
|
--mode sa_asr \
|
|
${_opts}
|
|
|
|
for f in token token_int score text text_id; do
|
|
if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then
|
|
for i in $(seq "${_nj}"); do
|
|
cat "${_logdir}/output.${i}/1best_recog/${f}"
|
|
done | sort -k1 >"${_dir}/${f}"
|
|
fi
|
|
done
|
|
|
|
python local/process_text_spk_merge.py ${_dir}
|
|
|
|
done
|
|
fi
|
|
|
|
|