FunASR/egs/alimeeting/sa_asr/run.sh
yhliang e8528b8f62
Dev lyh (#645)
* update

* update

* fix bug

* fix bug
2023-06-16 20:16:47 +08:00

436 lines
19 KiB
Bash
Executable File

#!/usr/bin/env bash
. ./path.sh || exit 1;
# machines configuration
CUDA_VISIBLE_DEVICES="6,7"
gpu_num=2
count=1
gpu_inference=true # Whether to perform gpu decoding, set false for cpu decoding
# for gpu decoding, inference_nj=ngpu*njob; for cpu decoding, inference_nj=njob
njob=8
train_cmd=utils/run.pl
infer_cmd=utils/run.pl
# general configuration
feats_dir="data" #feature output dictionary
exp_dir="exp"
lang=zh
token_type=char
type=sound
scp=wav.scp
speed_perturb="1.0"
min_wav_duration=0.1
max_wav_duration=20
profile_modes="cluster oracle"
stage=7
stop_stage=7
# feature configuration
feats_dim=80
nj=32
# data
raw_data=
data_url=
# exp tag
tag=""
. utils/parse_options.sh || exit 1;
# Set bash to 'debug' mode, it will exit on :
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
set -e
set -u
set -o pipefail
train_set=Train_Ali_far
valid_set=Eval_Ali_far
test_sets="Test_Ali_far Eval_Ali_far"
test_2023="Test_2023_Ali_far_release"
asr_config=conf/train_asr_conformer.yaml
sa_asr_config=conf/train_sa_asr_conformer.yaml
asr_model_dir="baseline_$(basename "${asr_config}" .yaml)_${lang}_${token_type}_${tag}"
sa_asr_model_dir="baseline_$(basename "${sa_asr_config}" .yaml)_${lang}_${token_type}_${tag}"
inference_config=conf/decode_asr_rnn.yaml
inference_sa_asr_model=valid.acc_spk.ave.pb
# you can set gpu num for decoding here
gpuid_list=$CUDA_VISIBLE_DEVICES # set gpus for decoding, the same as training stage by default
ngpu=$(echo $gpuid_list | awk -F "," '{print NF}')
if ${gpu_inference}; then
inference_nj=$[${ngpu}*${njob}]
_ngpu=1
else
inference_nj=$njob
_ngpu=0
fi
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
echo "stage 0: Data preparation"
# Data preparation
./local/alimeeting_data_prep.sh --tgt Test --min_wav_duration $min_wav_duration --max_wav_duration $max_wav_duration
./local/alimeeting_data_prep.sh --tgt Eval --min_wav_duration $min_wav_duration --max_wav_duration $max_wav_duration
./local/alimeeting_data_prep.sh --tgt Train --min_wav_duration $min_wav_duration --max_wav_duration $max_wav_duration
# remove long/short data
for x in ${train_set} ${valid_set} ${test_sets}; do
cp -r ${feats_dir}/org/${x} ${feats_dir}/${x}
rm ${feats_dir}/"${x}"/wav.scp ${feats_dir}/"${x}"/segments
local/format_wav_scp.sh --nj "${nj}" --cmd "${train_cmd}" \
--audio-format wav --segments ${feats_dir}/org/${x}/segments \
"${feats_dir}/org/${x}/${scp}" "${feats_dir}/${x}"
_min_length=$(python3 -c "print(int(${min_wav_duration} * 16000))")
_max_length=$(python3 -c "print(int(${max_wav_duration} * 16000))")
<"${feats_dir}/${x}/utt2num_samples" \
awk '{if($2 > '$_min_length' && $2 < '$_max_length')print $0;}' \
>"${feats_dir}/${x}/utt2num_samples_rmls"
mv ${feats_dir}/${x}/utt2num_samples_rmls ${feats_dir}/${x}/utt2num_samples
<"${feats_dir}/${x}/wav.scp" \
utils/filter_scp.pl "${feats_dir}/${x}/utt2num_samples" \
>"${feats_dir}/${x}/wav.scp_rmls"
mv ${feats_dir}/${x}/wav.scp_rmls ${feats_dir}/${x}/wav.scp
<"${feats_dir}/${x}/text" \
awk '{ if( NF != 1 ) print $0; }' >"${feats_dir}/${x}/text_rmblank"
mv ${feats_dir}/${x}/text_rmblank ${feats_dir}/${x}/text
local/fix_${feats_dir}_dir.sh "${feats_dir}/${x}"
<"${feats_dir}/${x}/utt2spk_all_fifo" \
utils/filter_scp.pl "${feats_dir}/${x}/text" \
>"${feats_dir}/${x}/utt2spk_all_fifo_rmls"
mv "${feats_dir}/${x}/utt2spk_all_fifo_rmls" "${feats_dir}/${x}/utt2spk_all_fifo"
done
for x in ${test_2023}; do
local/format_wav_scp.sh --nj "${nj}" --cmd "${train_cmd}" \
--audio-format wav --segments ${feats_dir}/org/${x}/segments \
"${feats_dir}/org/${x}/${scp}" "${feats_dir}/${x}"
cut -d " " -f1 ${feats_dir}/${x}/wav.scp > ${feats_dir}/${x}/uttid
paste -d " " ${feats_dir}/${x}/uttid ${feats_dir}/${x}/uttid > ${feats_dir}/${x}/utt2spk
cp ${feats_dir}/${x}/utt2spk ${feats_dir}/${x}/spk2utt
done
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
echo "stage 1: Speaker profile and CMVN Generation"
mkdir -p "profile_log"
for x in "${train_set}" "${valid_set}" "${test_sets}"; do
# generate text_id spk2id
python local/process_sot_fifo_textchar2spk.py --path ${feats_dir}/${x}
echo "Successfully generate ${feats_dir}/${x}/text_id ${feats_dir}/${x}/spk2id"
# generate text_id_train for sot
python local/process_text_id.py ${feats_dir}/${x}
echo "Successfully generate ${feats_dir}/${x}/text_id_train"
# generate oracle_embedding from single-speaker audio segment
echo "oracle_embedding is being generated in the background, and the log is profile_log/gen_oracle_embedding_${x}.log"
python local/gen_oracle_embedding.py "${feats_dir}/${x}" "data/org/${x}_single_speaker" &> "profile_log/gen_oracle_embedding_${x}.log"
echo "Successfully generate oracle embedding for ${x} (${feats_dir}/${x}/oracle_embedding.scp)"
# generate oracle_profile and cluster_profile from oracle_embedding and cluster_embedding (padding the speaker during training)
if [ "${x}" = "${train_set}" ]; then
python local/gen_oracle_profile_padding.py ${feats_dir}/${x}
echo "Successfully generate oracle profile for ${x} (${feats_dir}/${x}/oracle_profile_padding.scp)"
else
python local/gen_oracle_profile_nopadding.py ${feats_dir}/${x}
echo "Successfully generate oracle profile for ${x} (${feats_dir}/${x}/oracle_profile_nopadding.scp)"
fi
# generate cluster_profile with spectral-cluster directly (for infering and without oracle information)
if [ "${x}" = "${valid_set}" ] || [ "${x}" = "${test_sets}" ]; then
echo "cluster_profile is being generated in the background, and the log is profile_log/gen_cluster_profile_infer_${x}.log"
python local/gen_cluster_profile_infer.py "${feats_dir}/${x}" "${feats_dir}/org/${x}" 0.996 0.815 &> "profile_log/gen_cluster_profile_infer_${x}.log"
echo "Successfully generate cluster profile for ${x} (${feats_dir}/${x}/cluster_profile_infer.scp)"
fi
# compute CMVN
if [ "${x}" = "${train_set}" ]; then
local/compute_cmvn.sh --cmd "$train_cmd" --nj $nj --fbankdir ${feats_dir}/${train_set} --feats_dim ${feats_dim} --config_file "$asr_config" --scale 1.0
fi
done
for x in "${test_2023}"; do
# generate cluster_profile with spectral-cluster directly (for infering and without oracle information)
python local/gen_cluster_profile_infer.py "${feats_dir}/${x}" "${feats_dir}/org/${x}" 0.996 0.815 &> "profile_log/gen_cluster_profile_infer_${x}.log"
echo "Successfully generate cluster profile for ${x} (${feats_dir}/${x}/cluster_profile_infer.scp)"
done
fi
token_list=${feats_dir}/${lang}_token_list/char/tokens.txt
echo "dictionary: ${token_list}"
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
echo "stage 2: Dictionary Preparation"
mkdir -p ${feats_dir}/${lang}_token_list/char/
echo "make a dictionary"
echo "<blank>" > ${token_list}
echo "<s>" >> ${token_list}
echo "</s>" >> ${token_list}
utils/text2token.py -s 1 -n 1 --space "" ${feats_dir}/$train_set/text | cut -f 2- -d" " | tr " " "\n" \
| sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0}' >> ${token_list}
echo "<unk>" >> ${token_list}
fi
# LM Training Stage
world_size=$gpu_num # run on one machine
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
echo "stage 3: LM Training"
fi
# ASR Training Stage
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "Stage 4: ASR Training"
asr_exp=${exp_dir}/${asr_model_dir}
mkdir -p ${asr_exp}
mkdir -p ${asr_exp}/log
INIT_FILE=${asr_exp}/ddp_init
if [ -f $INIT_FILE ];then
rm -f $INIT_FILE
fi
init_method=file://$(readlink -f $INIT_FILE)
echo "$0: init method is $init_method"
for ((i = 0; i < $ngpu; ++i)); do
{
# i=0
rank=$i
local_rank=$i
gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
train.py \
--task_name asr \
--model asr \
--gpu_id $gpu_id \
--use_preprocessor true \
--split_with_space false \
--token_type char \
--token_list $token_list \
--data_dir ${feats_dir} \
--train_set ${train_set} \
--valid_set ${valid_set} \
--data_file_names "wav.scp,text" \
--cmvn_file ${feats_dir}/${train_set}/cmvn/cmvn.mvn \
--speed_perturb ${speed_perturb} \
--resume true \
--output_dir ${exp_dir}/${asr_model_dir} \
--config $asr_config \
--ngpu $gpu_num \
--num_worker_count $count \
--dist_init_method $init_method \
--dist_world_size $world_size \
--dist_rank $rank \
--local_rank $local_rank 1> ${exp_dir}/${asr_model_dir}/log/train.log.$i 2>&1
} &
done
wait
fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
echo "SA-ASR training"
asr_exp=${exp_dir}/${asr_model_dir}
sa_asr_exp=${exp_dir}/${sa_asr_model_dir}
mkdir -p ${sa_asr_exp}
mkdir -p ${sa_asr_exp}/log
INIT_FILE=${sa_asr_exp}/ddp_init
if [ ! -L ${feats_dir}/${train_set}/profile.scp ]; then
ln -sr ${feats_dir}/${train_set}/oracle_profile_padding.scp ${feats_dir}/${train_set}/profile.scp
ln -sr ${feats_dir}/${valid_set}/oracle_profile_nopadding.scp ${feats_dir}/${valid_set}/profile.scp
fi
if [ ! -f "${exp_dir}/damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch/sv.pth" ]; then
# download xvector extractor model file
python local/download_xvector_model.py ${exp_dir}
echo "Successfully download the pretrained xvector extractor to exp/damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch/sv.pth"
fi
if [ -f $INIT_FILE ];then
rm -f $INIT_FILE
fi
init_method=file://$(readlink -f $INIT_FILE)
echo "$0: init method is $init_method"
for ((i = 0; i < $ngpu; ++i)); do
{
rank=$i
local_rank=$i
gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
train.py \
--task_name asr \
--model sa_asr \
--gpu_id $gpu_id \
--use_preprocessor true \
--split_with_space false \
--unused_parameters true \
--token_type char \
--resume true \
--token_list $token_list \
--data_dir ${feats_dir} \
--train_set ${train_set} \
--valid_set ${valid_set} \
--data_file_names "wav.scp,text,profile.scp,text_id_train" \
--cmvn_file ${feats_dir}/${train_set}/cmvn/cmvn.mvn \
--speed_perturb ${speed_perturb} \
--init_param "${asr_exp}/valid.acc.ave.pb:encoder:asr_encoder" \
--init_param "${asr_exp}/valid.acc.ave.pb:ctc:ctc" \
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.embed:decoder.embed" \
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.output_layer:decoder.asr_output_layer" \
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.decoders.0.self_attn:decoder.decoder1.self_attn" \
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.decoders.0.src_attn:decoder.decoder3.src_attn" \
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.decoders.0.feed_forward:decoder.decoder3.feed_forward" \
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.decoders.1:decoder.decoder4.0" \
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.decoders.2:decoder.decoder4.1" \
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.decoders.3:decoder.decoder4.2" \
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.decoders.4:decoder.decoder4.3" \
--init_param "${asr_exp}/valid.acc.ave.pb:decoder.decoders.5:decoder.decoder4.4" \
--init_param "exp/damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch/sv.pth:encoder:spk_encoder" \
--init_param "exp/damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch/sv.pth:decoder:spk_encoder:decoder.output_dense" \
--output_dir ${exp_dir}/${sa_asr_model_dir} \
--config $sa_asr_config \
--ngpu $gpu_num \
--num_worker_count $count \
--dist_init_method $init_method \
--dist_world_size $world_size \
--dist_rank $rank \
--local_rank $local_rank 1> ${exp_dir}/${sa_asr_model_dir}/log/train.log.$i 2>&1
} &
done
wait
fi
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
echo "stage 6: Inference test sets"
for x in ${test_sets}; do
for profile_mode in ${profile_modes}; do
echo "decoding ${x} with ${profile_mode} profile"
sa_asr_exp=${exp_dir}/${sa_asr_model_dir}
inference_tag="$(basename "${inference_config}" .yaml)"
_dir="${sa_asr_exp}/${inference_tag}_${profile_mode}/${inference_sa_asr_model}/${x}"
_logdir="${_dir}/logdir"
if [ -d ${_dir} ]; then
echo "${_dir} is already exists. if you want to decode again, please delete this dir first."
exit 0
fi
mkdir -p "${_logdir}"
_data="${feats_dir}/${x}"
key_file=${_data}/${scp}
num_scp_file="$(<${key_file} wc -l)"
_nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file")
split_scps=
for n in $(seq "${_nj}"); do
split_scps+=" ${_logdir}/keys.${n}.scp"
done
# shellcheck disable=SC2086
utils/split_scp.pl "${key_file}" ${split_scps}
_opts=
if [ -n "${inference_config}" ]; then
_opts+="--config ${inference_config} "
fi
if [ $profile_mode = "oracle" ]; then
profile_scp=${profile_mode}_profile_nopadding.scp
else
profile_scp=${profile_mode}_profile_infer.scp
fi
${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/asr_inference.JOB.log \
python -m funasr.bin.asr_inference_launch \
--batch_size 1 \
--mc True \
--ngpu "${_ngpu}" \
--njob ${njob} \
--nbest 1 \
--gpuid_list ${gpuid_list} \
--allow_variable_data_keys true \
--cmvn_file ${feats_dir}/${train_set}/cmvn/cmvn.mvn \
--data_path_and_name_and_type "${_data}/${scp},speech,${type}" \
--data_path_and_name_and_type "${_data}/$profile_scp,profile,npy" \
--key_file "${_logdir}"/keys.JOB.scp \
--asr_train_config "${sa_asr_exp}"/config.yaml \
--asr_model_file "${sa_asr_exp}"/"${inference_sa_asr_model}" \
--output_dir "${_logdir}"/output.JOB \
--mode sa_asr \
${_opts}
for f in token token_int score text text_id; do
if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then
for i in $(seq "${_nj}"); do
cat "${_logdir}/output.${i}/1best_recog/${f}"
done | sort -k1 >"${_dir}/${f}"
fi
done
sed 's/\$//g' ${_data}/text > ${_data}/text_nosrc
sed 's/\$//g' ${_dir}/text > ${_dir}/text_nosrc
python utils/proce_text.py ${_data}/text_nosrc ${_data}/text.proc
python utils/proce_text.py ${_dir}/text_nosrc ${_dir}/text.proc
python utils/compute_wer.py ${_data}/text.proc ${_dir}/text.proc ${_dir}/text.cer
tail -n 3 ${_dir}/text.cer > ${_dir}/text.cer.txt
cat ${_dir}/text.cer.txt
python local/process_text_spk_merge.py ${_dir}
python local/process_text_spk_merge.py ${_data}
python local/compute_cpcer.py ${_data}/text_spk_merge ${_dir}/text_spk_merge ${_dir}/text.cpcer
tail -n 1 ${_dir}/text.cpcer > ${_dir}/text.cpcer.txt
cat ${_dir}/text.cpcer.txt
done
done
fi
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
echo "stage 7: Inference test 2023"
for x in ${test_2023}; do
sa_asr_exp=${exp_dir}/${sa_asr_model_dir}
inference_tag="$(basename "${inference_config}" .yaml)"
_dir="${sa_asr_exp}/${inference_tag}_cluster/${inference_sa_asr_model}/${x}"
_logdir="${_dir}/logdir"
if [ -d ${_dir} ]; then
echo "${_dir} is already exists. if you want to decode again, please delete this dir first."
exit 0
fi
mkdir -p "${_logdir}"
_data="${feats_dir}/${x}"
key_file=${_data}/${scp}
num_scp_file="$(<${key_file} wc -l)"
_nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file")
split_scps=
for n in $(seq "${_nj}"); do
split_scps+=" ${_logdir}/keys.${n}.scp"
done
# shellcheck disable=SC2086
utils/split_scp.pl "${key_file}" ${split_scps}
_opts=
if [ -n "${inference_config}" ]; then
_opts+="--config ${inference_config} "
fi
${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/asr_inference.JOB.log \
python -m funasr.bin.asr_inference_launch \
--batch_size 1 \
--mc True \
--ngpu "${_ngpu}" \
--njob ${njob} \
--nbest 1 \
--gpuid_list ${gpuid_list} \
--allow_variable_data_keys true \
--data_path_and_name_and_type "${_data}/${scp},speech,${type}" \
--data_path_and_name_and_type "${_data}/cluster_profile_infer.scp,profile,npy" \
--cmvn_file ${feats_dir}/${train_set}/cmvn/cmvn.mvn \
--key_file "${_logdir}"/keys.JOB.scp \
--asr_train_config "${sa_asr_exp}"/config.yaml \
--asr_model_file "${sa_asr_exp}"/"${inference_sa_asr_model}" \
--output_dir "${_logdir}"/output.JOB \
--mode sa_asr \
${_opts}
for f in token token_int score text text_id; do
if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then
for i in $(seq "${_nj}"); do
cat "${_logdir}/output.${i}/1best_recog/${f}"
done | sort -k1 >"${_dir}/${f}"
fi
done
python local/process_text_spk_merge.py ${_dir}
done
fi