mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
* update * update setup * update setup * update setup * update setup * update setup * update setup * update * update * update setup
397 lines
15 KiB
Python
397 lines
15 KiB
Python
"""Iterable dataset module."""
|
|
import copy
|
|
from io import StringIO
|
|
from pathlib import Path
|
|
from typing import Callable
|
|
from typing import Collection
|
|
from typing import Dict
|
|
from typing import Iterator
|
|
from typing import Tuple
|
|
from typing import Union
|
|
from typing import List
|
|
|
|
import kaldiio
|
|
import numpy as np
|
|
import torch
|
|
import torchaudio
|
|
import soundfile
|
|
from torch.utils.data.dataset import IterableDataset
|
|
import os.path
|
|
|
|
from funasr.datasets.dataset import ESPnetDataset
|
|
|
|
|
|
SUPPORT_AUDIO_TYPE_SETS = ['flac', 'mp3', 'ogg', 'opus', 'wav', 'pcm']
|
|
|
|
def load_kaldi(input):
|
|
retval = kaldiio.load_mat(input)
|
|
if isinstance(retval, tuple):
|
|
assert len(retval) == 2, len(retval)
|
|
if isinstance(retval[0], int) and isinstance(retval[1], np.ndarray):
|
|
# sound scp case
|
|
rate, array = retval
|
|
elif isinstance(retval[1], int) and isinstance(retval[0], np.ndarray):
|
|
# Extended ark format case
|
|
array, rate = retval
|
|
else:
|
|
raise RuntimeError(f"Unexpected type: {type(retval[0])}, {type(retval[1])}")
|
|
|
|
# Multichannel wave fie
|
|
# array: (NSample, Channel) or (Nsample)
|
|
|
|
else:
|
|
# Normal ark case
|
|
assert isinstance(retval, np.ndarray), type(retval)
|
|
array = retval
|
|
return array
|
|
|
|
|
|
def load_bytes(input):
|
|
middle_data = np.frombuffer(input, dtype=np.int16)
|
|
middle_data = np.asarray(middle_data)
|
|
if middle_data.dtype.kind not in 'iu':
|
|
raise TypeError("'middle_data' must be an array of integers")
|
|
dtype = np.dtype('float32')
|
|
if dtype.kind != 'f':
|
|
raise TypeError("'dtype' must be a floating point type")
|
|
|
|
i = np.iinfo(middle_data.dtype)
|
|
abs_max = 2 ** (i.bits - 1)
|
|
offset = i.min + abs_max
|
|
array = np.frombuffer((middle_data.astype(dtype) - offset) / abs_max, dtype=np.float32)
|
|
return array
|
|
|
|
def load_pcm(input):
|
|
with open(input,"rb") as f:
|
|
bytes = f.read()
|
|
return load_bytes(bytes)
|
|
|
|
def load_wav(input):
|
|
try:
|
|
return torchaudio.load(input)[0].numpy()
|
|
except:
|
|
waveform, _ = soundfile.read(input, dtype='float32')
|
|
if waveform.ndim == 2:
|
|
waveform = waveform[:, 0]
|
|
return np.expand_dims(waveform, axis=0)
|
|
|
|
DATA_TYPES = {
|
|
"sound": load_wav,
|
|
"pcm": load_pcm,
|
|
"kaldi_ark": load_kaldi,
|
|
"bytes": load_bytes,
|
|
"waveform": lambda x: x,
|
|
"npy": np.load,
|
|
"text_int": lambda x: np.loadtxt(
|
|
StringIO(x), ndmin=1, dtype=np.long, delimiter=" "
|
|
),
|
|
"csv_int": lambda x: np.loadtxt(StringIO(x), ndmin=1, dtype=np.long, delimiter=","),
|
|
"text_float": lambda x: np.loadtxt(
|
|
StringIO(x), ndmin=1, dtype=np.float32, delimiter=" "
|
|
),
|
|
"csv_float": lambda x: np.loadtxt(
|
|
StringIO(x), ndmin=1, dtype=np.float32, delimiter=","
|
|
),
|
|
"text": lambda x: x,
|
|
}
|
|
|
|
|
|
class IterableESPnetDataset(IterableDataset):
|
|
"""Pytorch Dataset class for ESPNet.
|
|
|
|
Examples:
|
|
>>> dataset = IterableESPnetDataset([('wav.scp', 'input', 'sound'),
|
|
... ('token_int', 'output', 'text_int')],
|
|
... )
|
|
>>> for uid, data in dataset:
|
|
... data
|
|
{'input': per_utt_array, 'output': per_utt_array}
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
path_name_type_list: Collection[Tuple[any, str, str]],
|
|
preprocess: Callable[
|
|
[str, Dict[str, np.ndarray]], Dict[str, np.ndarray]
|
|
] = None,
|
|
float_dtype: str = "float32",
|
|
fs: dict = None,
|
|
mc: bool = False,
|
|
int_dtype: str = "long",
|
|
key_file: str = None,
|
|
):
|
|
if len(path_name_type_list) == 0:
|
|
raise ValueError(
|
|
'1 or more elements are required for "path_name_type_list"'
|
|
)
|
|
|
|
path_name_type_list = copy.deepcopy(path_name_type_list)
|
|
self.preprocess = preprocess
|
|
|
|
self.float_dtype = float_dtype
|
|
self.int_dtype = int_dtype
|
|
self.key_file = key_file
|
|
self.fs = fs
|
|
self.mc = mc
|
|
|
|
self.debug_info = {}
|
|
non_iterable_list = []
|
|
self.path_name_type_list = []
|
|
|
|
if not isinstance(path_name_type_list[0], (Tuple, List)):
|
|
path = path_name_type_list[0]
|
|
name = path_name_type_list[1]
|
|
_type = path_name_type_list[2]
|
|
self.debug_info[name] = path, _type
|
|
if _type not in DATA_TYPES:
|
|
non_iterable_list.append((path, name, _type))
|
|
else:
|
|
self.path_name_type_list.append((path, name, _type))
|
|
else:
|
|
for path, name, _type in path_name_type_list:
|
|
self.debug_info[name] = path, _type
|
|
if _type not in DATA_TYPES:
|
|
non_iterable_list.append((path, name, _type))
|
|
else:
|
|
self.path_name_type_list.append((path, name, _type))
|
|
|
|
if len(non_iterable_list) != 0:
|
|
# Some types doesn't support iterable mode
|
|
self.non_iterable_dataset = ESPnetDataset(
|
|
path_name_type_list=non_iterable_list,
|
|
preprocess=preprocess,
|
|
float_dtype=float_dtype,
|
|
int_dtype=int_dtype,
|
|
)
|
|
else:
|
|
self.non_iterable_dataset = None
|
|
|
|
self.apply_utt2category = False
|
|
|
|
def has_name(self, name) -> bool:
|
|
return name in self.debug_info
|
|
|
|
def names(self) -> Tuple[str, ...]:
|
|
return tuple(self.debug_info)
|
|
|
|
def __repr__(self):
|
|
_mes = self.__class__.__name__
|
|
_mes += "("
|
|
for name, (path, _type) in self.debug_info.items():
|
|
_mes += f'\n {name}: {{"path": "{path}", "type": "{_type}"}}'
|
|
_mes += f"\n preprocess: {self.preprocess})"
|
|
return _mes
|
|
|
|
def __iter__(self) -> Iterator[Tuple[Union[str, int], Dict[str, np.ndarray]]]:
|
|
count = 0
|
|
if len(self.path_name_type_list) != 0 and (self.path_name_type_list[0][2] == "bytes" or self.path_name_type_list[0][2] == "waveform"):
|
|
linenum = len(self.path_name_type_list)
|
|
data = {}
|
|
for i in range(linenum):
|
|
value = self.path_name_type_list[i][0]
|
|
uid = 'utt_id'
|
|
name = self.path_name_type_list[i][1]
|
|
_type = self.path_name_type_list[i][2]
|
|
func = DATA_TYPES[_type]
|
|
array = func(value)
|
|
if self.fs is not None and (name == "speech" or name == "ref_speech"):
|
|
audio_fs = self.fs["audio_fs"]
|
|
model_fs = self.fs["model_fs"]
|
|
if audio_fs is not None and model_fs is not None:
|
|
array = torch.from_numpy(array)
|
|
array = array.unsqueeze(0)
|
|
array = torchaudio.transforms.Resample(orig_freq=audio_fs,
|
|
new_freq=model_fs)(array)
|
|
array = array.squeeze(0).numpy()
|
|
|
|
data[name] = array
|
|
|
|
if self.preprocess is not None:
|
|
data = self.preprocess(uid, data)
|
|
for name in data:
|
|
count += 1
|
|
value = data[name]
|
|
if not isinstance(value, np.ndarray):
|
|
raise RuntimeError(
|
|
f'All values must be converted to np.ndarray object '
|
|
f'by preprocessing, but "{name}" is still {type(value)}.')
|
|
# Cast to desired type
|
|
if value.dtype.kind == 'f':
|
|
value = value.astype(self.float_dtype)
|
|
elif value.dtype.kind == 'i':
|
|
value = value.astype(self.int_dtype)
|
|
else:
|
|
raise NotImplementedError(
|
|
f'Not supported dtype: {value.dtype}')
|
|
data[name] = value
|
|
|
|
yield uid, data
|
|
|
|
elif len(self.path_name_type_list) != 0 and self.path_name_type_list[0][2] == "sound" and not self.path_name_type_list[0][0].lower().endswith(".scp"):
|
|
linenum = len(self.path_name_type_list)
|
|
data = {}
|
|
for i in range(linenum):
|
|
value = self.path_name_type_list[i][0]
|
|
uid = os.path.basename(self.path_name_type_list[i][0]).split(".")[0]
|
|
name = self.path_name_type_list[i][1]
|
|
_type = self.path_name_type_list[i][2]
|
|
if _type == "sound":
|
|
audio_type = os.path.basename(value).lower()
|
|
if audio_type.rfind(".pcm") >= 0:
|
|
_type = "pcm"
|
|
func = DATA_TYPES[_type]
|
|
array = func(value)
|
|
if self.fs is not None and (name == "speech" or name == "ref_speech"):
|
|
audio_fs = self.fs["audio_fs"]
|
|
model_fs = self.fs["model_fs"]
|
|
if audio_fs is not None and model_fs is not None:
|
|
array = torch.from_numpy(array)
|
|
array = torchaudio.transforms.Resample(orig_freq=audio_fs,
|
|
new_freq=model_fs)(array)
|
|
array = array.numpy()
|
|
|
|
if _type == "sound":
|
|
if self.mc:
|
|
data[name] = array.transpose((1, 0))
|
|
else:
|
|
data[name] = array[0]
|
|
else:
|
|
data[name] = array
|
|
|
|
if self.preprocess is not None:
|
|
data = self.preprocess(uid, data)
|
|
for name in data:
|
|
count += 1
|
|
value = data[name]
|
|
if not isinstance(value, np.ndarray):
|
|
raise RuntimeError(
|
|
f'All values must be converted to np.ndarray object '
|
|
f'by preprocessing, but "{name}" is still {type(value)}.')
|
|
# Cast to desired type
|
|
if value.dtype.kind == 'f':
|
|
value = value.astype(self.float_dtype)
|
|
elif value.dtype.kind == 'i':
|
|
value = value.astype(self.int_dtype)
|
|
else:
|
|
raise NotImplementedError(
|
|
f'Not supported dtype: {value.dtype}')
|
|
data[name] = value
|
|
|
|
yield uid, data
|
|
|
|
else:
|
|
if self.key_file is not None:
|
|
uid_iter = (
|
|
line.rstrip().split(maxsplit=1)[0]
|
|
for line in open(self.key_file, encoding="utf-8")
|
|
)
|
|
elif len(self.path_name_type_list) != 0:
|
|
uid_iter = (
|
|
line.rstrip().split(maxsplit=1)[0]
|
|
for line in open(self.path_name_type_list[0][0], encoding="utf-8")
|
|
)
|
|
else:
|
|
uid_iter = iter(self.non_iterable_dataset)
|
|
|
|
files = [open(lis[0], encoding="utf-8") for lis in self.path_name_type_list]
|
|
|
|
worker_info = torch.utils.data.get_worker_info()
|
|
|
|
linenum = 0
|
|
for count, uid in enumerate(uid_iter, 1):
|
|
# If num_workers>=1, split keys
|
|
if worker_info is not None:
|
|
if (count - 1) % worker_info.num_workers != worker_info.id:
|
|
continue
|
|
|
|
# 1. Read a line from each file
|
|
while True:
|
|
keys = []
|
|
values = []
|
|
for f in files:
|
|
linenum += 1
|
|
try:
|
|
line = next(f)
|
|
except StopIteration:
|
|
raise RuntimeError(f"{uid} is not found in the files")
|
|
sps = line.rstrip().split(maxsplit=1)
|
|
if len(sps) != 2:
|
|
raise RuntimeError(
|
|
f"This line doesn't include a space:"
|
|
f" {f}:L{linenum}: {line})"
|
|
)
|
|
key, value = sps
|
|
keys.append(key)
|
|
values.append(value)
|
|
|
|
for k_idx, k in enumerate(keys):
|
|
if k != keys[0]:
|
|
raise RuntimeError(
|
|
f"Keys are mismatched. Text files (idx={k_idx}) is "
|
|
f"not sorted or not having same keys at L{linenum}"
|
|
)
|
|
|
|
# If the key is matched, break the loop
|
|
if len(keys) == 0 or keys[0] == uid:
|
|
break
|
|
|
|
# 2. Load the entry from each line and create a dict
|
|
data = {}
|
|
# 2.a. Load data streamingly
|
|
for value, (path, name, _type) in zip(values, self.path_name_type_list):
|
|
if _type == "sound":
|
|
audio_type = os.path.basename(value).lower()
|
|
if audio_type.rfind(".pcm") >= 0:
|
|
_type = "pcm"
|
|
func = DATA_TYPES[_type]
|
|
# Load entry
|
|
array = func(value)
|
|
if self.fs is not None and name == "speech":
|
|
audio_fs = self.fs["audio_fs"]
|
|
model_fs = self.fs["model_fs"]
|
|
if audio_fs is not None and model_fs is not None:
|
|
array = torch.from_numpy(array)
|
|
array = torchaudio.transforms.Resample(orig_freq=audio_fs,
|
|
new_freq=model_fs)(array)
|
|
array = array.numpy()
|
|
if _type == "sound":
|
|
if self.mc:
|
|
data[name] = array.transpose((1, 0))
|
|
else:
|
|
data[name] = array[0]
|
|
else:
|
|
data[name] = array
|
|
if self.non_iterable_dataset is not None:
|
|
# 2.b. Load data from non-iterable dataset
|
|
_, from_non_iterable = self.non_iterable_dataset[uid]
|
|
data.update(from_non_iterable)
|
|
|
|
# 3. [Option] Apply preprocessing
|
|
# e.g. funasr.train.preprocessor:CommonPreprocessor
|
|
if self.preprocess is not None:
|
|
data = self.preprocess(uid, data)
|
|
|
|
# 4. Force data-precision
|
|
for name in data:
|
|
value = data[name]
|
|
if not isinstance(value, np.ndarray):
|
|
raise RuntimeError(
|
|
f"All values must be converted to np.ndarray object "
|
|
f'by preprocessing, but "{name}" is still {type(value)}.'
|
|
)
|
|
|
|
# Cast to desired type
|
|
if value.dtype.kind == "f":
|
|
value = value.astype(self.float_dtype)
|
|
elif value.dtype.kind == "i":
|
|
value = value.astype(self.int_dtype)
|
|
else:
|
|
raise NotImplementedError(f"Not supported dtype: {value.dtype}")
|
|
data[name] = value
|
|
|
|
yield uid, data
|
|
|
|
if count == 0:
|
|
raise RuntimeError("No iteration")
|
|
|