FunASR/funasr/bin/train_llm.py
zhifu gao 5023dd0422
Dev gzf llm (#1503)
* update

* update

* update

* update onnx

* update with main (#1492)

* contextual&seaco ONNX export (#1481)

* contextual&seaco ONNX export

* update ContextualEmbedderExport2

* update ContextualEmbedderExport2

* update code

* onnx (#1482)

* qwenaudio qwenaudiochat

* qwenaudio qwenaudiochat

* whisper

* whisper

* llm

* llm

* llm

* llm

* llm

* llm

* llm

* llm

* export onnx

* export onnx

* export onnx

* dingding

* dingding

* llm

* doc

* onnx

* onnx

* onnx

* onnx

* onnx

* onnx

* v1.0.15

* qwenaudio

* qwenaudio

* issue doc

* update

* update

* bugfix

* onnx

* update export calling

* update codes

* remove useless code

* update code

---------

Co-authored-by: zhifu gao <zhifu.gzf@alibaba-inc.com>

* acknowledge

---------

Co-authored-by: Shi Xian <40013335+R1ckShi@users.noreply.github.com>

* update onnx

* update onnx

* train update

* train update

* train update

* train update

---------

Co-authored-by: Shi Xian <40013335+R1ckShi@users.noreply.github.com>
2024-03-15 16:24:29 +08:00

205 lines
7.8 KiB
Python

#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
import os
import sys
import torch
import hydra
import logging
import time
import argparse
from io import BytesIO
import torch.distributed as dist
from collections.abc import Sequence
from omegaconf import DictConfig, OmegaConf
from torch.cuda.amp import autocast, GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
from funasr.train_utils.average_nbest_models import average_checkpoints
from funasr.register import tables
from funasr.optimizers import optim_classes
from funasr.train_utils.trainer_llm import Trainer
from funasr.schedulers import scheduler_classes
from funasr.train_utils.initialize import initialize
from funasr.download.download_from_hub import download_model
from funasr.models.lora.utils import mark_only_lora_as_trainable
from funasr.train_utils.set_all_random_seed import set_all_random_seed
from funasr.train_utils.load_pretrained_model import load_pretrained_model
# from funasr.tokenizer.build_tokenizer import build_tokenizer
# from funasr.tokenizer.token_id_converter import TokenIDConverter
# from funasr.tokenizer.funtoken import build_tokenizer
from funasr import AutoModel
@hydra.main(config_name=None, version_base=None)
def main_hydra(kwargs: DictConfig):
if kwargs.get("debug", False):
import pdb; pdb.set_trace()
assert "model" in kwargs
if "model_conf" not in kwargs:
logging.info("download models from model hub: {}".format(kwargs.get("hub", "ms")))
kwargs = download_model(is_training=kwargs.get("is_training", True), **kwargs)
main(**kwargs)
def main(**kwargs):
print(kwargs)
# set random seed
set_all_random_seed(kwargs.get("seed", 0))
torch.backends.cudnn.enabled = kwargs.get("cudnn_enabled", torch.backends.cudnn.enabled)
torch.backends.cudnn.benchmark = kwargs.get("cudnn_benchmark", torch.backends.cudnn.benchmark)
torch.backends.cudnn.deterministic = kwargs.get("cudnn_deterministic", True)
local_rank = int(os.environ.get('LOCAL_RANK', 0))
if local_rank == 0:
tables.print()
# Check if we are using DDP or FSDP
use_ddp = 'WORLD_SIZE' in os.environ and int(os.environ["WORLD_SIZE"]) > 1
use_fsdp = kwargs.get("use_fsdp", None)
if use_ddp or use_fsdp:
dist.init_process_group(backend=kwargs.get("backend", "nccl"), init_method='env://')
torch.cuda.set_device(local_rank)
device = kwargs.get("device", "cuda")
kwargs["device"] = "cpu"
model = AutoModel(**kwargs)
# save config.yaml
if (use_ddp or use_fsdp) and dist.get_rank() == 0 or not (use_ddp or use_fsdp) and local_rank == 0:
os.makedirs(kwargs.get("output_dir", "./"), exist_ok=True)
yaml_file = os.path.join(kwargs.get("output_dir", "./"), "config.yaml")
OmegaConf.save(config=kwargs, f=yaml_file)
logging.info("config.yaml is saved to: %s", yaml_file)
# parse kwargs
kwargs = model.kwargs
kwargs["device"] = device
tokenizer = kwargs["tokenizer"]
frontend = kwargs["frontend"]
model = model.model
del kwargs["model"]
# freeze_param
freeze_param = kwargs.get("freeze_param", None)
if freeze_param is not None:
freeze_param = eval(freeze_param)
if isinstance(freeze_param, Sequence):
freeze_param = (freeze_param,)
logging.info("freeze_param is not None: %s", freeze_param)
for t in freeze_param:
for k, p in model.named_parameters():
if k.startswith(t + ".") or k == t:
logging.info(f"Setting {k}.requires_grad = False")
p.requires_grad = False
if use_ddp:
model = model.cuda(local_rank)
model = DDP(model, device_ids=[local_rank],
find_unused_parameters=kwargs.get("train_conf", {}).get("find_unused_parameters", False))
elif use_fsdp:
model = FSDP(model).cuda(local_rank)
else:
model = model.to(device=kwargs.get("device", "cuda"))
kwargs["device"] = next(model.parameters()).device
# optim
optim = kwargs.get("optim", "adam")
assert optim in optim_classes
optim_class = optim_classes.get(optim)
optim = optim_class(model.parameters(), **kwargs.get("optim_conf"))
# scheduler
scheduler = kwargs.get("scheduler", "warmuplr")
assert scheduler in scheduler_classes
scheduler_class = scheduler_classes.get(scheduler)
scheduler = scheduler_class(optim, **kwargs.get("scheduler_conf"))
# dataset
dataset_class = tables.dataset_classes.get(kwargs.get("dataset", "AudioDataset"))
dataset_tr = dataset_class(kwargs.get("train_data_set_list"), frontend=frontend, tokenizer=tokenizer, is_training=True, **kwargs.get("dataset_conf"))
dataset_val = dataset_class(kwargs.get("valid_data_set_list"), frontend=frontend, tokenizer=tokenizer, is_training=False, **kwargs.get("dataset_conf"))
# dataloader
batch_sampler = kwargs["dataset_conf"].get("batch_sampler", "DynamicBatchLocalShuffleSampler")
batch_sampler_val = None
if batch_sampler is not None:
batch_sampler_class = tables.batch_sampler_classes.get(batch_sampler)
batch_sampler = batch_sampler_class(dataset_tr, **kwargs.get("dataset_conf"))
batch_sampler_val = batch_sampler_class(dataset_val, is_training=False, **kwargs.get("dataset_conf"))
dataloader_tr = torch.utils.data.DataLoader(dataset_tr, collate_fn=dataset_tr.collator, **batch_sampler)
dataloader_val = torch.utils.data.DataLoader(dataset_val, collate_fn=dataset_val.collator, **batch_sampler_val)
trainer = Trainer(local_rank=local_rank,
use_ddp=use_ddp,
resume=kwargs.get("resume", True),
device=kwargs["device"],
**kwargs.get("train_conf"),
)
scaler = GradScaler(enabled=trainer.use_fp16) if trainer.use_fp16 else None
scaler = ShardedGradScaler(enabled=trainer.use_fp16) if trainer.use_fsdp else scaler
trainer.resume_checkpoint(model=model, optim=optim, scheduler=scheduler, scaler=scaler)
tensorboard_dir = os.path.join(kwargs.get("output_dir"), "tensorboard")
os.makedirs(tensorboard_dir, exist_ok=True)
try:
from tensorboardX import SummaryWriter
writer = SummaryWriter(tensorboard_dir) if trainer.rank == 0 else None
except:
writer = None
for epoch in range(trainer.start_epoch, trainer.max_epoch + 1):
time1 = time.perf_counter()
trainer.train_epoch(
model=model,
optim=optim,
scheduler=scheduler,
scaler=scaler,
dataloader_train=dataloader_tr,
dataloader_val=dataloader_val,
epoch=epoch,
writer=writer
)
trainer.validate_epoch(
model=model,
dataloader_val=dataloader_val,
epoch=epoch,
writer=writer
)
trainer.save_checkpoint(epoch, model=model, optim=optim, scheduler=scheduler, scaler=scaler)
scheduler.step()
time2 = time.perf_counter()
time_escaped = (time2 - time1) / 3600.0
logging.info(
f"\nrank: {local_rank}, "
f"time_escaped_epoch: {time_escaped:.3f} hours, "
f"estimated to finish {trainer.max_epoch} "
f"epoch: {(trainer.max_epoch - epoch) * time_escaped:.3f} hours\n")
if trainer.rank == 0:
average_checkpoints(trainer.output_dir, trainer.avg_nbest_model)
trainer.close()
if __name__ == "__main__":
main_hydra()