FunASR/funasr/utils/misc.py
zhifu gao 4482bbcbb9
train (#1521)
* trainer

* trainer

* trainer

* trainer

* trainer

* trainer

* trainer

* trainer

* trainer

* trainer

* trainer

* trainer

* trainer

* trainer

* trainer

* trainer
2024-03-21 11:49:30 +08:00

75 lines
2.5 KiB
Python

import os
import io
import shutil
from collections import OrderedDict
import numpy as np
from omegaconf import DictConfig, OmegaConf
def statistic_model_parameters(model, prefix=None):
var_dict = model.state_dict()
numel = 0
for i, key in enumerate(sorted(list([x for x in var_dict.keys() if "num_batches_tracked" not in x]))):
if prefix is None or key.startswith(prefix):
numel += var_dict[key].numel()
return numel
def int2vec(x, vec_dim=8, dtype=np.int32):
b = ('{:0' + str(vec_dim) + 'b}').format(x)
# little-endian order: lower bit first
return (np.array(list(b)[::-1]) == '1').astype(dtype)
def seq2arr(seq, vec_dim=8):
return np.row_stack([int2vec(int(x), vec_dim) for x in seq])
def load_scp_as_dict(scp_path, value_type='str', kv_sep=" "):
with io.open(scp_path, 'r', encoding='utf-8') as f:
ret_dict = OrderedDict()
for one_line in f.readlines():
one_line = one_line.strip()
pos = one_line.find(kv_sep)
key, value = one_line[:pos], one_line[pos + 1:]
if value_type == 'list':
value = value.split(' ')
ret_dict[key] = value
return ret_dict
def load_scp_as_list(scp_path, value_type='str', kv_sep=" "):
with io.open(scp_path, 'r', encoding='utf8') as f:
ret_dict = []
for one_line in f.readlines():
one_line = one_line.strip()
pos = one_line.find(kv_sep)
key, value = one_line[:pos], one_line[pos + 1:]
if value_type == 'list':
value = value.split(' ')
ret_dict.append((key, value))
return ret_dict
def deep_update(original, update):
for key, value in update.items():
if isinstance(value, dict) and key in original:
deep_update(original[key], value)
else:
original[key] = value
def prepare_model_dir(**kwargs):
os.makedirs(kwargs.get("output_dir", "./"), exist_ok=True)
yaml_file = os.path.join(kwargs.get("output_dir", "./"), "config.yaml")
OmegaConf.save(config=kwargs, f=yaml_file)
print(kwargs)
logging.info("config.yaml is saved to: %s", yaml_file)
# model_path = kwargs.get("model_path")
# if model_path is not None:
# config_json = os.path.join(model_path, "configuration.json")
# if os.path.exists(config_json):
# shutil.copy(config_json, os.path.join(kwargs.get("output_dir", "./"), "configuration.json"))