mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
234 lines
7.6 KiB
Python
234 lines
7.6 KiB
Python
import logging
|
|
|
|
from funasr.layers.global_mvn import GlobalMVN
|
|
from funasr.layers.utterance_mvn import UtteranceMVN
|
|
from funasr.models.ctc import CTC
|
|
from funasr.models.decoder.abs_decoder import AbsDecoder
|
|
from funasr.models.decoder.contextual_decoder import ContextualParaformerDecoder
|
|
from funasr.models.decoder.rnn_decoder import RNNDecoder
|
|
from funasr.models.decoder.sanm_decoder import ParaformerSANMDecoder, FsmnDecoderSCAMAOpt
|
|
from funasr.models.decoder.transformer_decoder import (
|
|
DynamicConvolution2DTransformerDecoder, # noqa: H301
|
|
)
|
|
from funasr.models.decoder.transformer_decoder import DynamicConvolutionTransformerDecoder
|
|
from funasr.models.decoder.transformer_decoder import (
|
|
LightweightConvolution2DTransformerDecoder, # noqa: H301
|
|
)
|
|
from funasr.models.decoder.transformer_decoder import (
|
|
LightweightConvolutionTransformerDecoder, # noqa: H301
|
|
)
|
|
from funasr.models.decoder.transformer_decoder import ParaformerDecoderSAN
|
|
from funasr.models.decoder.transformer_decoder import TransformerDecoder
|
|
from funasr.models.e2e_asr import ESPnetASRModel
|
|
from funasr.models.e2e_asr_mfcca import MFCCA
|
|
from funasr.models.e2e_asr_paraformer import Paraformer, ParaformerBert, BiCifParaformer, ContextualParaformer
|
|
from funasr.models.e2e_tp import TimestampPredictor
|
|
from funasr.models.e2e_uni_asr import UniASR
|
|
from funasr.models.encoder.conformer_encoder import ConformerEncoder
|
|
from funasr.models.encoder.data2vec_encoder import Data2VecEncoder
|
|
from funasr.models.encoder.mfcca_encoder import MFCCAEncoder
|
|
from funasr.models.encoder.rnn_encoder import RNNEncoder
|
|
from funasr.models.encoder.sanm_encoder import SANMEncoder, SANMEncoderChunkOpt
|
|
from funasr.models.encoder.transformer_encoder import TransformerEncoder
|
|
from funasr.models.frontend.default import DefaultFrontend
|
|
from funasr.models.frontend.default import MultiChannelFrontend
|
|
from funasr.models.frontend.fused import FusedFrontends
|
|
from funasr.models.frontend.s3prl import S3prlFrontend
|
|
from funasr.models.frontend.wav_frontend import WavFrontend
|
|
from funasr.models.frontend.windowing import SlidingWindow
|
|
from funasr.models.predictor.cif import CifPredictor, CifPredictorV2, CifPredictorV3
|
|
from funasr.models.specaug.specaug import SpecAug
|
|
from funasr.models.specaug.specaug import SpecAugLFR
|
|
from funasr.modules.subsampling import Conv1dSubsampling
|
|
from funasr.train.class_choices import ClassChoices
|
|
|
|
frontend_choices = ClassChoices(
|
|
name="frontend",
|
|
classes=dict(
|
|
default=DefaultFrontend,
|
|
sliding_window=SlidingWindow,
|
|
s3prl=S3prlFrontend,
|
|
fused=FusedFrontends,
|
|
wav_frontend=WavFrontend,
|
|
multichannelfrontend=MultiChannelFrontend,
|
|
),
|
|
default="default",
|
|
)
|
|
specaug_choices = ClassChoices(
|
|
name="specaug",
|
|
classes=dict(
|
|
specaug=SpecAug,
|
|
specaug_lfr=SpecAugLFR,
|
|
),
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
normalize_choices = ClassChoices(
|
|
"normalize",
|
|
classes=dict(
|
|
global_mvn=GlobalMVN,
|
|
utterance_mvn=UtteranceMVN,
|
|
),
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
model_choices = ClassChoices(
|
|
"model",
|
|
classes=dict(
|
|
asr=ESPnetASRModel,
|
|
uniasr=UniASR,
|
|
paraformer=Paraformer,
|
|
paraformer_bert=ParaformerBert,
|
|
bicif_paraformer=BiCifParaformer,
|
|
contextual_paraformer=ContextualParaformer,
|
|
mfcca=MFCCA,
|
|
timestamp_prediction=TimestampPredictor,
|
|
),
|
|
default="asr",
|
|
)
|
|
encoder_choices = ClassChoices(
|
|
"encoder",
|
|
classes=dict(
|
|
conformer=ConformerEncoder,
|
|
transformer=TransformerEncoder,
|
|
rnn=RNNEncoder,
|
|
sanm=SANMEncoder,
|
|
sanm_chunk_opt=SANMEncoderChunkOpt,
|
|
data2vec_encoder=Data2VecEncoder,
|
|
mfcca_enc=MFCCAEncoder,
|
|
),
|
|
default="rnn",
|
|
)
|
|
encoder_choices2 = ClassChoices(
|
|
"encoder2",
|
|
classes=dict(
|
|
conformer=ConformerEncoder,
|
|
transformer=TransformerEncoder,
|
|
rnn=RNNEncoder,
|
|
sanm=SANMEncoder,
|
|
sanm_chunk_opt=SANMEncoderChunkOpt,
|
|
),
|
|
default="rnn",
|
|
)
|
|
decoder_choices = ClassChoices(
|
|
"decoder",
|
|
classes=dict(
|
|
transformer=TransformerDecoder,
|
|
lightweight_conv=LightweightConvolutionTransformerDecoder,
|
|
lightweight_conv2d=LightweightConvolution2DTransformerDecoder,
|
|
dynamic_conv=DynamicConvolutionTransformerDecoder,
|
|
dynamic_conv2d=DynamicConvolution2DTransformerDecoder,
|
|
rnn=RNNDecoder,
|
|
fsmn_scama_opt=FsmnDecoderSCAMAOpt,
|
|
paraformer_decoder_sanm=ParaformerSANMDecoder,
|
|
paraformer_decoder_san=ParaformerDecoderSAN,
|
|
contextual_paraformer_decoder=ContextualParaformerDecoder,
|
|
),
|
|
default="rnn",
|
|
)
|
|
decoder_choices2 = ClassChoices(
|
|
"decoder2",
|
|
classes=dict(
|
|
transformer=TransformerDecoder,
|
|
lightweight_conv=LightweightConvolutionTransformerDecoder,
|
|
lightweight_conv2d=LightweightConvolution2DTransformerDecoder,
|
|
dynamic_conv=DynamicConvolutionTransformerDecoder,
|
|
dynamic_conv2d=DynamicConvolution2DTransformerDecoder,
|
|
rnn=RNNDecoder,
|
|
fsmn_scama_opt=FsmnDecoderSCAMAOpt,
|
|
paraformer_decoder_sanm=ParaformerSANMDecoder,
|
|
),
|
|
type_check=AbsDecoder,
|
|
default="rnn",
|
|
)
|
|
predictor_choices = ClassChoices(
|
|
name="predictor",
|
|
classes=dict(
|
|
cif_predictor=CifPredictor,
|
|
ctc_predictor=None,
|
|
cif_predictor_v2=CifPredictorV2,
|
|
cif_predictor_v3=CifPredictorV3,
|
|
),
|
|
default="cif_predictor",
|
|
optional=True,
|
|
)
|
|
predictor_choices2 = ClassChoices(
|
|
name="predictor2",
|
|
classes=dict(
|
|
cif_predictor=CifPredictor,
|
|
ctc_predictor=None,
|
|
cif_predictor_v2=CifPredictorV2,
|
|
),
|
|
default="cif_predictor",
|
|
optional=True,
|
|
)
|
|
stride_conv_choices = ClassChoices(
|
|
name="stride_conv",
|
|
classes=dict(
|
|
stride_conv1d=Conv1dSubsampling
|
|
),
|
|
default="stride_conv1d",
|
|
optional=True,
|
|
)
|
|
|
|
|
|
def build_model(args):
|
|
# token_list
|
|
if args.token_list is not None:
|
|
with open(args.token_list) as f:
|
|
token_list = [line.rstrip() for line in f]
|
|
args.token_list = list(token_list)
|
|
vocab_size = len(token_list)
|
|
logging.info(f"Vocabulary size: {vocab_size}")
|
|
else:
|
|
vocab_size = None
|
|
|
|
# frontend
|
|
if args.input_size is None:
|
|
# Extract features in the model
|
|
frontend_class = frontend_choices.get_class(args.frontend)
|
|
if args.frontend == 'wav_frontend':
|
|
frontend = frontend_class(cmvn_file=args.cmvn_file, **args.frontend_conf)
|
|
else:
|
|
frontend = frontend_class(**args.frontend_conf)
|
|
input_size = frontend.output_size()
|
|
else:
|
|
# Give features from data-loader
|
|
args.frontend = None
|
|
args.frontend_conf = {}
|
|
frontend = None
|
|
input_size = args.input_size
|
|
|
|
# data augmentation for spectrogram
|
|
if args.specaug is not None:
|
|
specaug_class = specaug_choices.get_class(args.specaug)
|
|
specaug = specaug_class(**args.specaug_conf)
|
|
else:
|
|
specaug = None
|
|
|
|
# normalization layer
|
|
if args.normalize is not None:
|
|
normalize_class = normalize_choices.get_class(args.normalize)
|
|
normalize = normalize_class(**args.normalize_conf)
|
|
else:
|
|
normalize = None
|
|
|
|
# encoder
|
|
encoder_class = encoder_choices.get_class(args.encoder)
|
|
encoder = encoder_class(input_size=input_size, **args.encoder_conf)
|
|
|
|
# decoder
|
|
decoder_class = decoder_choices.get_class(args.decoder)
|
|
decoder = decoder_class(
|
|
vocab_size=vocab_size,
|
|
encoder_output_size=encoder.output_size(),
|
|
**args.decoder_conf,
|
|
)
|
|
|
|
# ctc
|
|
ctc = CTC(
|
|
odim=vocab_size, encoder_output_size=encoder.output_size(), **args.ctc_conf
|
|
)
|
|
|
|
|