mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
58 lines
2.1 KiB
Python
58 lines
2.1 KiB
Python
|
|
import time
|
|
import sys
|
|
import librosa
|
|
from funasr.utils.types import str2bool
|
|
|
|
import argparse
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--model_dir', type=str, required=True)
|
|
parser.add_argument('--backend', type=str, default='onnx', help='["onnx", "torch"]')
|
|
parser.add_argument('--wav_file', type=str, default=None, help='amp fallback number')
|
|
parser.add_argument('--quantize', type=str2bool, default=False, help='quantized model')
|
|
parser.add_argument('--intra_op_num_threads', type=int, default=1, help='intra_op_num_threads for onnx')
|
|
parser.add_argument('--batch_size', type=int, default=1, help='batch_size for onnx')
|
|
args = parser.parse_args()
|
|
|
|
|
|
from funasr.runtime.python.libtorch.funasr_torch import Paraformer
|
|
if args.backend == "onnx":
|
|
from funasr.runtime.python.onnxruntime.funasr_onnx import Paraformer
|
|
|
|
model = Paraformer(args.model_dir, batch_size=args.batch_size, quantize=args.quantize, intra_op_num_threads=args.intra_op_num_threads)
|
|
|
|
wav_file_f = open(args.wav_file, 'r')
|
|
wav_files = wav_file_f.readlines()
|
|
|
|
# warm-up
|
|
total = 0.0
|
|
num = 30
|
|
wav_path = wav_files[0].split("\t")[1].strip() if "\t" in wav_files[0] else wav_files[0].split(" ")[1].strip()
|
|
for i in range(num):
|
|
beg_time = time.time()
|
|
result = model(wav_path)
|
|
end_time = time.time()
|
|
duration = end_time-beg_time
|
|
total += duration
|
|
print(result)
|
|
print("num: {}, time, {}, avg: {}, rtf: {}".format(len(wav_path), duration, total/(i+1), (total/(i+1))/5.53))
|
|
|
|
# infer time
|
|
wav_path = []
|
|
beg_time = time.time()
|
|
for i, wav_path_i in enumerate(wav_files):
|
|
wav_path_i = wav_path_i.split("\t")[1].strip() if "\t" in wav_path_i else wav_path_i.split(" ")[1].strip()
|
|
wav_path += [wav_path_i]
|
|
result = model(wav_path)
|
|
end_time = time.time()
|
|
duration = (end_time-beg_time)*1000
|
|
print("total_time_comput_ms: {}".format(int(duration)))
|
|
|
|
duration_time = 0.0
|
|
for i, wav_path_i in enumerate(wav_files):
|
|
wav_path = wav_path_i.split("\t")[1].strip() if "\t" in wav_path_i else wav_path_i.split(" ")[1].strip()
|
|
waveform, _ = librosa.load(wav_path, sr=16000)
|
|
duration_time += len(waveform)/16.0
|
|
print("total_time_wav_ms: {}".format(int(duration_time)))
|
|
|
|
print("total_rtf: {:.5}".format(duration/duration_time)) |