FunASR/funasr/models/e2e_diar_eend_ola.py
2023-03-13 16:04:27 +08:00

396 lines
14 KiB
Python

# Copyright ESPnet (https://github.com/espnet/espnet). All Rights Reserved.
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
import logging
import torch
from contextlib import contextmanager
from distutils.version import LooseVersion
from funasr.layers.abs_normalize import AbsNormalize
from funasr.losses.label_smoothing_loss import (
LabelSmoothingLoss, # noqa: H301
)
from funasr.models.ctc import CTC
from funasr.models.decoder.abs_decoder import AbsDecoder
from funasr.models.encoder.abs_encoder import AbsEncoder
from funasr.models.frontend.abs_frontend import AbsFrontend
from funasr.models.postencoder.abs_postencoder import AbsPostEncoder
from funasr.models.preencoder.abs_preencoder import AbsPreEncoder
from funasr.models.specaug.abs_specaug import AbsSpecAug
from funasr.modules.add_sos_eos import add_sos_eos
from funasr.modules.e2e_asr_common import ErrorCalculator
from funasr.modules.eend_ola.encoder import TransformerEncoder
from funasr.modules.eend_ola.encoder_decoder_attractor import EncoderDecoderAttractor
from funasr.modules.eend_ola.utils.power import generate_mapping_dict
from funasr.modules.nets_utils import th_accuracy
from funasr.torch_utils.device_funcs import force_gatherable
from funasr.train.abs_espnet_model import AbsESPnetModel
from typeguard import check_argument_types
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
from torch.cuda.amp import autocast
else:
# Nothing to do if torch<1.6.0
@contextmanager
def autocast(enabled=True):
yield
class DiarEENDOLAModel(AbsESPnetModel):
"""CTC-attention hybrid Encoder-Decoder model"""
def __init__(
self,
encoder: TransformerEncoder,
eda: EncoderDecoderAttractor,
max_n_speaker: int = 8,
attractor_loss_weight: float = 1.0,
mapping_dict=None,
**kwargs,
):
assert check_argument_types()
super().__init__()
self.encoder = encoder
self.eda = eda
self.attractor_loss_weight = attractor_loss_weight
self.max_n_speaker = max_n_speaker
if mapping_dict is None:
mapping_dict = generate_mapping_dict(max_speaker_num=self.max_n_speaker)
self.mapping_dict = mapping_dict
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
assert text_lengths.dim() == 1, text_lengths.shape
# Check that batch_size is unified
assert (
speech.shape[0]
== speech_lengths.shape[0]
== text.shape[0]
== text_lengths.shape[0]
), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
batch_size = speech.shape[0]
# for data-parallel
text = text[:, : text_lengths.max()]
# 1. Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
intermediate_outs = None
if isinstance(encoder_out, tuple):
intermediate_outs = encoder_out[1]
encoder_out = encoder_out[0]
loss_att, acc_att, cer_att, wer_att = None, None, None, None
loss_ctc, cer_ctc = None, None
stats = dict()
# 1. CTC branch
if self.ctc_weight != 0.0:
loss_ctc, cer_ctc = self._calc_ctc_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# Collect CTC branch stats
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
stats["cer_ctc"] = cer_ctc
# Intermediate CTC (optional)
loss_interctc = 0.0
if self.interctc_weight != 0.0 and intermediate_outs is not None:
for layer_idx, intermediate_out in intermediate_outs:
# we assume intermediate_out has the same length & padding
# as those of encoder_out
loss_ic, cer_ic = self._calc_ctc_loss(
intermediate_out, encoder_out_lens, text, text_lengths
)
loss_interctc = loss_interctc + loss_ic
# Collect Intermedaite CTC stats
stats["loss_interctc_layer{}".format(layer_idx)] = (
loss_ic.detach() if loss_ic is not None else None
)
stats["cer_interctc_layer{}".format(layer_idx)] = cer_ic
loss_interctc = loss_interctc / len(intermediate_outs)
# calculate whole encoder loss
loss_ctc = (
1 - self.interctc_weight
) * loss_ctc + self.interctc_weight * loss_interctc
# 2b. Attention decoder branch
if self.ctc_weight != 1.0:
loss_att, acc_att, cer_att, wer_att = self._calc_att_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# 3. CTC-Att loss definition
if self.ctc_weight == 0.0:
loss = loss_att
elif self.ctc_weight == 1.0:
loss = loss_ctc
else:
loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att
# Collect Attn branch stats
stats["loss_att"] = loss_att.detach() if loss_att is not None else None
stats["acc"] = acc_att
stats["cer"] = cer_att
stats["wer"] = wer_att
# Collect total loss stats
stats["loss"] = torch.clone(loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def collect_feats(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
) -> Dict[str, torch.Tensor]:
if self.extract_feats_in_collect_stats:
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
else:
# Generate dummy stats if extract_feats_in_collect_stats is False
logging.warning(
"Generating dummy stats for feats and feats_lengths, "
"because encoder_conf.extract_feats_in_collect_stats is "
f"{self.extract_feats_in_collect_stats}"
)
feats, feats_lengths = speech, speech_lengths
return {"feats": feats, "feats_lengths": feats_lengths}
def encode(
self, speech: torch.Tensor, speech_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Frontend + Encoder. Note that this method is used by asr_inference.py
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
"""
with autocast(False):
# 1. Extract feats
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
# 2. Data augmentation
if self.specaug is not None and self.training:
feats, feats_lengths = self.specaug(feats, feats_lengths)
# 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
if self.normalize is not None:
feats, feats_lengths = self.normalize(feats, feats_lengths)
# Pre-encoder, e.g. used for raw input data
if self.preencoder is not None:
feats, feats_lengths = self.preencoder(feats, feats_lengths)
# 4. Forward encoder
# feats: (Batch, Length, Dim)
# -> encoder_out: (Batch, Length2, Dim2)
if self.encoder.interctc_use_conditioning:
encoder_out, encoder_out_lens, _ = self.encoder(
feats, feats_lengths, ctc=self.ctc
)
else:
encoder_out, encoder_out_lens, _ = self.encoder(feats, feats_lengths)
intermediate_outs = None
if isinstance(encoder_out, tuple):
intermediate_outs = encoder_out[1]
encoder_out = encoder_out[0]
# Post-encoder, e.g. NLU
if self.postencoder is not None:
encoder_out, encoder_out_lens = self.postencoder(
encoder_out, encoder_out_lens
)
assert encoder_out.size(0) == speech.size(0), (
encoder_out.size(),
speech.size(0),
)
assert encoder_out.size(1) <= encoder_out_lens.max(), (
encoder_out.size(),
encoder_out_lens.max(),
)
if intermediate_outs is not None:
return (encoder_out, intermediate_outs), encoder_out_lens
return encoder_out, encoder_out_lens
def _extract_feats(
self, speech: torch.Tensor, speech_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
assert speech_lengths.dim() == 1, speech_lengths.shape
# for data-parallel
speech = speech[:, : speech_lengths.max()]
if self.frontend is not None:
# Frontend
# e.g. STFT and Feature extract
# data_loader may send time-domain signal in this case
# speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim)
feats, feats_lengths = self.frontend(speech, speech_lengths)
else:
# No frontend and no feature extract
feats, feats_lengths = speech, speech_lengths
return feats, feats_lengths
def nll(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
) -> torch.Tensor:
"""Compute negative log likelihood(nll) from transformer-decoder
Normally, this function is called in batchify_nll.
Args:
encoder_out: (Batch, Length, Dim)
encoder_out_lens: (Batch,)
ys_pad: (Batch, Length)
ys_pad_lens: (Batch,)
"""
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_in_lens = ys_pad_lens + 1
# 1. Forward decoder
decoder_out, _ = self.decoder(
encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens
) # [batch, seqlen, dim]
batch_size = decoder_out.size(0)
decoder_num_class = decoder_out.size(2)
# nll: negative log-likelihood
nll = torch.nn.functional.cross_entropy(
decoder_out.view(-1, decoder_num_class),
ys_out_pad.view(-1),
ignore_index=self.ignore_id,
reduction="none",
)
nll = nll.view(batch_size, -1)
nll = nll.sum(dim=1)
assert nll.size(0) == batch_size
return nll
def batchify_nll(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
batch_size: int = 100,
):
"""Compute negative log likelihood(nll) from transformer-decoder
To avoid OOM, this fuction seperate the input into batches.
Then call nll for each batch and combine and return results.
Args:
encoder_out: (Batch, Length, Dim)
encoder_out_lens: (Batch,)
ys_pad: (Batch, Length)
ys_pad_lens: (Batch,)
batch_size: int, samples each batch contain when computing nll,
you may change this to avoid OOM or increase
GPU memory usage
"""
total_num = encoder_out.size(0)
if total_num <= batch_size:
nll = self.nll(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)
else:
nll = []
start_idx = 0
while True:
end_idx = min(start_idx + batch_size, total_num)
batch_encoder_out = encoder_out[start_idx:end_idx, :, :]
batch_encoder_out_lens = encoder_out_lens[start_idx:end_idx]
batch_ys_pad = ys_pad[start_idx:end_idx, :]
batch_ys_pad_lens = ys_pad_lens[start_idx:end_idx]
batch_nll = self.nll(
batch_encoder_out,
batch_encoder_out_lens,
batch_ys_pad,
batch_ys_pad_lens,
)
nll.append(batch_nll)
start_idx = end_idx
if start_idx == total_num:
break
nll = torch.cat(nll)
assert nll.size(0) == total_num
return nll
def _calc_att_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_in_lens = ys_pad_lens + 1
# 1. Forward decoder
decoder_out, _ = self.decoder(
encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens
)
# 2. Compute attention loss
loss_att = self.criterion_att(decoder_out, ys_out_pad)
acc_att = th_accuracy(
decoder_out.view(-1, self.vocab_size),
ys_out_pad,
ignore_label=self.ignore_id,
)
# Compute cer/wer using attention-decoder
if self.training or self.error_calculator is None:
cer_att, wer_att = None, None
else:
ys_hat = decoder_out.argmax(dim=-1)
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
return loss_att, acc_att, cer_att, wer_att
def _calc_ctc_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
# Calc CTC loss
loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)
# Calc CER using CTC
cer_ctc = None
if not self.training and self.error_calculator is not None:
ys_hat = self.ctc.argmax(encoder_out).data
cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True)
return loss_ctc, cer_ctc