mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
* update * update setup * update setup * update setup * update setup * update setup * update setup * update * update * update setup
257 lines
7.7 KiB
Python
257 lines
7.7 KiB
Python
import logging
|
|
|
|
import torch
|
|
|
|
from funasr.layers.abs_normalize import AbsNormalize
|
|
from funasr.layers.global_mvn import GlobalMVN
|
|
from funasr.layers.utterance_mvn import UtteranceMVN
|
|
from funasr.models.base_model import FunASRModel
|
|
from funasr.models.decoder.abs_decoder import AbsDecoder
|
|
from funasr.models.decoder.sv_decoder import DenseDecoder
|
|
from funasr.models.e2e_sv import ESPnetSVModel
|
|
from funasr.models.encoder.abs_encoder import AbsEncoder
|
|
from funasr.models.encoder.resnet34_encoder import ResNet34, ResNet34_SP_L2Reg
|
|
from funasr.models.encoder.rnn_encoder import RNNEncoder
|
|
from funasr.models.frontend.abs_frontend import AbsFrontend
|
|
from funasr.models.frontend.default import DefaultFrontend
|
|
from funasr.models.frontend.fused import FusedFrontends
|
|
from funasr.models.frontend.s3prl import S3prlFrontend
|
|
from funasr.models.frontend.wav_frontend import WavFrontend
|
|
from funasr.models.frontend.windowing import SlidingWindow
|
|
from funasr.models.pooling.statistic_pooling import StatisticPooling
|
|
from funasr.models.postencoder.abs_postencoder import AbsPostEncoder
|
|
from funasr.models.postencoder.hugging_face_transformers_postencoder import (
|
|
HuggingFaceTransformersPostEncoder, # noqa: H301
|
|
)
|
|
from funasr.models.preencoder.abs_preencoder import AbsPreEncoder
|
|
from funasr.models.preencoder.linear import LinearProjection
|
|
from funasr.models.preencoder.sinc import LightweightSincConvs
|
|
from funasr.models.specaug.abs_specaug import AbsSpecAug
|
|
from funasr.models.specaug.specaug import SpecAug
|
|
from funasr.torch_utils.initialize import initialize
|
|
from funasr.train.class_choices import ClassChoices
|
|
|
|
frontend_choices = ClassChoices(
|
|
name="frontend",
|
|
classes=dict(
|
|
default=DefaultFrontend,
|
|
sliding_window=SlidingWindow,
|
|
s3prl=S3prlFrontend,
|
|
fused=FusedFrontends,
|
|
wav_frontend=WavFrontend,
|
|
),
|
|
type_check=AbsFrontend,
|
|
default="default",
|
|
)
|
|
specaug_choices = ClassChoices(
|
|
name="specaug",
|
|
classes=dict(
|
|
specaug=SpecAug,
|
|
),
|
|
type_check=AbsSpecAug,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
normalize_choices = ClassChoices(
|
|
"normalize",
|
|
classes=dict(
|
|
global_mvn=GlobalMVN,
|
|
utterance_mvn=UtteranceMVN,
|
|
),
|
|
type_check=AbsNormalize,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
model_choices = ClassChoices(
|
|
"model",
|
|
classes=dict(
|
|
espnet=ESPnetSVModel,
|
|
),
|
|
type_check=FunASRModel,
|
|
default="espnet",
|
|
)
|
|
preencoder_choices = ClassChoices(
|
|
name="preencoder",
|
|
classes=dict(
|
|
sinc=LightweightSincConvs,
|
|
linear=LinearProjection,
|
|
),
|
|
type_check=AbsPreEncoder,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
encoder_choices = ClassChoices(
|
|
"encoder",
|
|
classes=dict(
|
|
resnet34=ResNet34,
|
|
resnet34_sp_l2reg=ResNet34_SP_L2Reg,
|
|
rnn=RNNEncoder,
|
|
),
|
|
type_check=AbsEncoder,
|
|
default="resnet34",
|
|
)
|
|
postencoder_choices = ClassChoices(
|
|
name="postencoder",
|
|
classes=dict(
|
|
hugging_face_transformers=HuggingFaceTransformersPostEncoder,
|
|
),
|
|
type_check=AbsPostEncoder,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
pooling_choices = ClassChoices(
|
|
name="pooling_type",
|
|
classes=dict(
|
|
statistic=StatisticPooling,
|
|
),
|
|
type_check=torch.nn.Module,
|
|
default="statistic",
|
|
)
|
|
decoder_choices = ClassChoices(
|
|
"decoder",
|
|
classes=dict(
|
|
dense=DenseDecoder,
|
|
),
|
|
type_check=AbsDecoder,
|
|
default="dense",
|
|
)
|
|
|
|
class_choices_list = [
|
|
# --frontend and --frontend_conf
|
|
frontend_choices,
|
|
# --specaug and --specaug_conf
|
|
specaug_choices,
|
|
# --normalize and --normalize_conf
|
|
normalize_choices,
|
|
# --model and --model_conf
|
|
model_choices,
|
|
# --preencoder and --preencoder_conf
|
|
preencoder_choices,
|
|
# --encoder and --encoder_conf
|
|
encoder_choices,
|
|
# --postencoder and --postencoder_conf
|
|
postencoder_choices,
|
|
# --pooling and --pooling_conf
|
|
pooling_choices,
|
|
# --decoder and --decoder_conf
|
|
decoder_choices,
|
|
]
|
|
|
|
|
|
def build_sv_model(args):
|
|
# token_list
|
|
if isinstance(args.token_list, str):
|
|
with open(args.token_list, encoding="utf-8") as f:
|
|
token_list = [line.rstrip() for line in f]
|
|
|
|
# Overwriting token_list to keep it as "portable".
|
|
args.token_list = list(token_list)
|
|
elif isinstance(args.token_list, (tuple, list)):
|
|
token_list = list(args.token_list)
|
|
else:
|
|
raise RuntimeError("token_list must be str or list")
|
|
vocab_size = len(token_list)
|
|
logging.info(f"Speaker number: {vocab_size}")
|
|
|
|
# 1. frontend
|
|
if args.input_size is None:
|
|
# Extract features in the model
|
|
frontend_class = frontend_choices.get_class(args.frontend)
|
|
frontend = frontend_class(**args.frontend_conf)
|
|
input_size = frontend.output_size()
|
|
else:
|
|
# Give features from data-loader
|
|
args.frontend = None
|
|
args.frontend_conf = {}
|
|
frontend = None
|
|
input_size = args.input_size
|
|
|
|
# 2. Data augmentation for spectrogram
|
|
if args.specaug is not None:
|
|
specaug_class = specaug_choices.get_class(args.specaug)
|
|
specaug = specaug_class(**args.specaug_conf)
|
|
else:
|
|
specaug = None
|
|
|
|
# 3. Normalization layer
|
|
if args.normalize is not None:
|
|
normalize_class = normalize_choices.get_class(args.normalize)
|
|
normalize = normalize_class(**args.normalize_conf)
|
|
else:
|
|
normalize = None
|
|
|
|
# 4. Pre-encoder input block
|
|
# NOTE(kan-bayashi): Use getattr to keep the compatibility
|
|
if getattr(args, "preencoder", None) is not None:
|
|
preencoder_class = preencoder_choices.get_class(args.preencoder)
|
|
preencoder = preencoder_class(**args.preencoder_conf)
|
|
input_size = preencoder.output_size()
|
|
else:
|
|
preencoder = None
|
|
|
|
# 5. Encoder
|
|
encoder_class = encoder_choices.get_class(args.encoder)
|
|
encoder = encoder_class(input_size=input_size, **args.encoder_conf)
|
|
|
|
# 6. Post-encoder block
|
|
# NOTE(kan-bayashi): Use getattr to keep the compatibility
|
|
encoder_output_size = encoder.output_size()
|
|
if getattr(args, "postencoder", None) is not None:
|
|
postencoder_class = postencoder_choices.get_class(args.postencoder)
|
|
postencoder = postencoder_class(
|
|
input_size=encoder_output_size, **args.postencoder_conf
|
|
)
|
|
encoder_output_size = postencoder.output_size()
|
|
else:
|
|
postencoder = None
|
|
|
|
# 7. Pooling layer
|
|
pooling_class = pooling_choices.get_class(args.pooling_type)
|
|
pooling_dim = (2, 3)
|
|
eps = 1e-12
|
|
if hasattr(args, "pooling_type_conf"):
|
|
if "pooling_dim" in args.pooling_type_conf:
|
|
pooling_dim = args.pooling_type_conf["pooling_dim"]
|
|
if "eps" in args.pooling_type_conf:
|
|
eps = args.pooling_type_conf["eps"]
|
|
pooling_layer = pooling_class(
|
|
pooling_dim=pooling_dim,
|
|
eps=eps,
|
|
)
|
|
if args.pooling_type == "statistic":
|
|
encoder_output_size *= 2
|
|
|
|
# 8. Decoder
|
|
decoder_class = decoder_choices.get_class(args.decoder)
|
|
decoder = decoder_class(
|
|
vocab_size=vocab_size,
|
|
encoder_output_size=encoder_output_size,
|
|
**args.decoder_conf,
|
|
)
|
|
|
|
# 7. Build model
|
|
try:
|
|
model_class = model_choices.get_class(args.model)
|
|
except AttributeError:
|
|
model_class = model_choices.get_class("espnet")
|
|
model = model_class(
|
|
vocab_size=vocab_size,
|
|
token_list=token_list,
|
|
frontend=frontend,
|
|
specaug=specaug,
|
|
normalize=normalize,
|
|
preencoder=preencoder,
|
|
encoder=encoder,
|
|
postencoder=postencoder,
|
|
pooling_layer=pooling_layer,
|
|
decoder=decoder,
|
|
**args.model_conf,
|
|
)
|
|
|
|
# FIXME(kamo): Should be done in model?
|
|
# 8. Initialize
|
|
if args.init is not None:
|
|
initialize(model, args.init)
|
|
|
|
return model
|