FunASR/funasr/build_utils/build_lm_model.py
2023-06-14 20:58:09 +08:00

63 lines
1.7 KiB
Python

import logging
from funasr.train.abs_model import AbsLM
from funasr.train.abs_model import LanguageModel
from funasr.models.seq_rnn_lm import SequentialRNNLM
from funasr.models.transformer_lm import TransformerLM
from funasr.torch_utils.initialize import initialize
from funasr.train.class_choices import ClassChoices
lm_choices = ClassChoices(
"lm",
classes=dict(
seq_rnn=SequentialRNNLM,
transformer=TransformerLM,
),
type_check=AbsLM,
default="seq_rnn",
)
model_choices = ClassChoices(
"model",
classes=dict(
lm=LanguageModel,
),
default="lm",
)
class_choices_list = [
# --lm and --lm_conf
lm_choices,
# --model and --model_conf
model_choices
]
def build_lm_model(args):
# token_list
if isinstance(args.token_list, str):
with open(args.token_list, encoding="utf-8") as f:
token_list = [line.rstrip() for line in f]
args.token_list = list(token_list)
vocab_size = len(token_list)
logging.info(f"Vocabulary size: {vocab_size}")
elif isinstance(args.token_list, (tuple, list)):
token_list = list(args.token_list)
vocab_size = len(token_list)
logging.info(f"Vocabulary size: {vocab_size}")
else:
vocab_size = None
# lm
lm_class = lm_choices.get_class(args.lm)
lm = lm_class(vocab_size=vocab_size, **args.lm_conf)
args.model = args.model if hasattr(args, "model") else "lm"
model_class = model_choices.get_class(args.model)
model = model_class(lm=lm, vocab_size=vocab_size, **args.model_conf)
# initialize
if args.init is not None:
initialize(model, args.init)
return model