mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
327 lines
10 KiB
Python
327 lines
10 KiB
Python
import logging
|
|
|
|
import torch
|
|
|
|
from funasr.layers.global_mvn import GlobalMVN
|
|
from funasr.layers.label_aggregation import LabelAggregate, LabelAggregateMaxPooling
|
|
from funasr.layers.utterance_mvn import UtteranceMVN
|
|
from funasr.models.e2e_diar_eend_ola import DiarEENDOLAModel
|
|
from funasr.models.e2e_diar_sond import DiarSondModel
|
|
from funasr.models.encoder.conformer_encoder import ConformerEncoder
|
|
from funasr.models.encoder.data2vec_encoder import Data2VecEncoder
|
|
from funasr.models.encoder.ecapa_tdnn_encoder import ECAPA_TDNN
|
|
from funasr.models.encoder.opennmt_encoders.ci_scorers import DotScorer, CosScorer
|
|
from funasr.models.encoder.opennmt_encoders.conv_encoder import ConvEncoder
|
|
from funasr.models.encoder.opennmt_encoders.fsmn_encoder import FsmnEncoder
|
|
from funasr.models.encoder.opennmt_encoders.self_attention_encoder import SelfAttentionEncoder
|
|
from funasr.models.encoder.resnet34_encoder import ResNet34Diar, ResNet34SpL2RegDiar
|
|
from funasr.models.encoder.rnn_encoder import RNNEncoder
|
|
from funasr.models.encoder.sanm_encoder import SANMEncoder, SANMEncoderChunkOpt
|
|
from funasr.models.encoder.transformer_encoder import TransformerEncoder
|
|
from funasr.models.frontend.default import DefaultFrontend
|
|
from funasr.models.frontend.fused import FusedFrontends
|
|
from funasr.models.frontend.s3prl import S3prlFrontend
|
|
from funasr.models.frontend.wav_frontend import WavFrontend
|
|
from funasr.models.frontend.wav_frontend import WavFrontendMel23
|
|
from funasr.models.frontend.windowing import SlidingWindow
|
|
from funasr.models.specaug.specaug import SpecAug
|
|
from funasr.models.specaug.specaug import SpecAugLFR
|
|
from funasr.models.specaug.abs_profileaug import AbsProfileAug
|
|
from funasr.models.specaug.profileaug import ProfileAug
|
|
from funasr.modules.eend_ola.encoder import EENDOLATransformerEncoder
|
|
from funasr.modules.eend_ola.encoder_decoder_attractor import EncoderDecoderAttractor
|
|
from funasr.torch_utils.initialize import initialize
|
|
from funasr.train.class_choices import ClassChoices
|
|
|
|
frontend_choices = ClassChoices(
|
|
name="frontend",
|
|
classes=dict(
|
|
default=DefaultFrontend,
|
|
sliding_window=SlidingWindow,
|
|
s3prl=S3prlFrontend,
|
|
fused=FusedFrontends,
|
|
wav_frontend=WavFrontend,
|
|
wav_frontend_mel23=WavFrontendMel23,
|
|
),
|
|
default="default",
|
|
)
|
|
specaug_choices = ClassChoices(
|
|
name="specaug",
|
|
classes=dict(
|
|
specaug=SpecAug,
|
|
specaug_lfr=SpecAugLFR,
|
|
),
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
profileaug_choices = ClassChoices(
|
|
name="profileaug",
|
|
classes=dict(
|
|
profileaug=ProfileAug,
|
|
),
|
|
type_check=AbsProfileAug,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
normalize_choices = ClassChoices(
|
|
"normalize",
|
|
classes=dict(
|
|
global_mvn=GlobalMVN,
|
|
utterance_mvn=UtteranceMVN,
|
|
),
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
label_aggregator_choices = ClassChoices(
|
|
"label_aggregator",
|
|
classes=dict(
|
|
label_aggregator=LabelAggregate,
|
|
label_aggregator_max_pool=LabelAggregateMaxPooling,
|
|
),
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
model_choices = ClassChoices(
|
|
"model",
|
|
classes=dict(
|
|
sond=DiarSondModel,
|
|
eend_ola=DiarEENDOLAModel,
|
|
),
|
|
default="sond",
|
|
)
|
|
encoder_choices = ClassChoices(
|
|
"encoder",
|
|
classes=dict(
|
|
conformer=ConformerEncoder,
|
|
transformer=TransformerEncoder,
|
|
rnn=RNNEncoder,
|
|
sanm=SANMEncoder,
|
|
san=SelfAttentionEncoder,
|
|
fsmn=FsmnEncoder,
|
|
conv=ConvEncoder,
|
|
resnet34=ResNet34Diar,
|
|
resnet34_sp_l2reg=ResNet34SpL2RegDiar,
|
|
sanm_chunk_opt=SANMEncoderChunkOpt,
|
|
data2vec_encoder=Data2VecEncoder,
|
|
ecapa_tdnn=ECAPA_TDNN,
|
|
eend_ola_transformer=EENDOLATransformerEncoder,
|
|
),
|
|
default="resnet34",
|
|
)
|
|
speaker_encoder_choices = ClassChoices(
|
|
"speaker_encoder",
|
|
classes=dict(
|
|
conformer=ConformerEncoder,
|
|
transformer=TransformerEncoder,
|
|
rnn=RNNEncoder,
|
|
sanm=SANMEncoder,
|
|
san=SelfAttentionEncoder,
|
|
fsmn=FsmnEncoder,
|
|
conv=ConvEncoder,
|
|
sanm_chunk_opt=SANMEncoderChunkOpt,
|
|
data2vec_encoder=Data2VecEncoder,
|
|
),
|
|
default=None,
|
|
optional=True
|
|
)
|
|
cd_scorer_choices = ClassChoices(
|
|
"cd_scorer",
|
|
classes=dict(
|
|
san=SelfAttentionEncoder,
|
|
),
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
ci_scorer_choices = ClassChoices(
|
|
"ci_scorer",
|
|
classes=dict(
|
|
dot=DotScorer,
|
|
cosine=CosScorer,
|
|
conv=ConvEncoder,
|
|
),
|
|
type_check=torch.nn.Module,
|
|
default=None,
|
|
optional=True,
|
|
)
|
|
# decoder is used for output (e.g. post_net in SOND)
|
|
decoder_choices = ClassChoices(
|
|
"decoder",
|
|
classes=dict(
|
|
rnn=RNNEncoder,
|
|
fsmn=FsmnEncoder,
|
|
),
|
|
type_check=torch.nn.Module,
|
|
default="fsmn",
|
|
)
|
|
# encoder_decoder_attractor is used for EEND-OLA
|
|
encoder_decoder_attractor_choices = ClassChoices(
|
|
"encoder_decoder_attractor",
|
|
classes=dict(
|
|
eda=EncoderDecoderAttractor,
|
|
),
|
|
type_check=torch.nn.Module,
|
|
default="eda",
|
|
)
|
|
class_choices_list = [
|
|
# --frontend and --frontend_conf
|
|
frontend_choices,
|
|
# --specaug and --specaug_conf
|
|
specaug_choices,
|
|
# --profileaug and --profileaug_conf
|
|
profileaug_choices,
|
|
# --normalize and --normalize_conf
|
|
normalize_choices,
|
|
# --label_aggregator and --label_aggregator_conf
|
|
label_aggregator_choices,
|
|
# --model and --model_conf
|
|
model_choices,
|
|
# --encoder and --encoder_conf
|
|
encoder_choices,
|
|
# --speaker_encoder and --speaker_encoder_conf
|
|
speaker_encoder_choices,
|
|
# --cd_scorer and cd_scorer_conf
|
|
cd_scorer_choices,
|
|
# --ci_scorer and ci_scorer_conf
|
|
ci_scorer_choices,
|
|
# --decoder and --decoder_conf
|
|
decoder_choices,
|
|
# --eda and --eda_conf
|
|
encoder_decoder_attractor_choices,
|
|
]
|
|
|
|
|
|
def build_diar_model(args):
|
|
# token_list
|
|
if args.token_list is not None:
|
|
if isinstance(args.token_list, str):
|
|
with open(args.token_list, encoding="utf-8") as f:
|
|
token_list = [line.rstrip() for line in f]
|
|
|
|
# Overwriting token_list to keep it as "portable".
|
|
args.token_list = list(token_list)
|
|
elif isinstance(args.token_list, (tuple, list)):
|
|
token_list = list(args.token_list)
|
|
else:
|
|
raise RuntimeError("token_list must be str or list")
|
|
vocab_size = len(token_list)
|
|
logging.info(f"Vocabulary size: {vocab_size}")
|
|
else:
|
|
token_list = None
|
|
vocab_size = None
|
|
|
|
# frontend
|
|
if args.input_size is None:
|
|
frontend_class = frontend_choices.get_class(args.frontend)
|
|
if args.frontend == 'wav_frontend':
|
|
frontend = frontend_class(cmvn_file=args.cmvn_file, **args.frontend_conf)
|
|
else:
|
|
frontend = frontend_class(**args.frontend_conf)
|
|
input_size = frontend.output_size()
|
|
else:
|
|
args.frontend = None
|
|
args.frontend_conf = {}
|
|
frontend = None
|
|
input_size = args.input_size
|
|
|
|
if args.model == "sond":
|
|
# encoder
|
|
encoder_class = encoder_choices.get_class(args.encoder)
|
|
encoder = encoder_class(input_size=input_size ,**args.encoder_conf)
|
|
|
|
# data augmentation for spectrogram
|
|
if args.specaug is not None:
|
|
specaug_class = specaug_choices.get_class(args.specaug)
|
|
specaug = specaug_class(**args.specaug_conf)
|
|
else:
|
|
specaug = None
|
|
|
|
# Data augmentation for Profiles
|
|
if hasattr(args, "profileaug") and args.profileaug is not None:
|
|
profileaug_class = profileaug_choices.get_class(args.profileaug)
|
|
profileaug = profileaug_class(**args.profileaug_conf)
|
|
else:
|
|
profileaug = None
|
|
|
|
# normalization layer
|
|
if args.normalize is not None:
|
|
normalize_class = normalize_choices.get_class(args.normalize)
|
|
normalize = normalize_class(**args.normalize_conf)
|
|
else:
|
|
normalize = None
|
|
|
|
# speaker encoder
|
|
if getattr(args, "speaker_encoder", None) is not None:
|
|
speaker_encoder_class = speaker_encoder_choices.get_class(args.speaker_encoder)
|
|
speaker_encoder = speaker_encoder_class(**args.speaker_encoder_conf)
|
|
else:
|
|
speaker_encoder = None
|
|
|
|
# ci scorer
|
|
if getattr(args, "ci_scorer", None) is not None:
|
|
ci_scorer_class = ci_scorer_choices.get_class(args.ci_scorer)
|
|
ci_scorer = ci_scorer_class(**args.ci_scorer_conf)
|
|
else:
|
|
ci_scorer = None
|
|
|
|
# cd scorer
|
|
if getattr(args, "cd_scorer", None) is not None:
|
|
cd_scorer_class = cd_scorer_choices.get_class(args.cd_scorer)
|
|
cd_scorer = cd_scorer_class(**args.cd_scorer_conf)
|
|
else:
|
|
cd_scorer = None
|
|
|
|
# decoder
|
|
decoder_class = decoder_choices.get_class(args.decoder)
|
|
decoder = decoder_class(**args.decoder_conf)
|
|
|
|
# logger aggregator
|
|
if getattr(args, "label_aggregator", None) is not None:
|
|
label_aggregator_class = label_aggregator_choices.get_class(args.label_aggregator)
|
|
label_aggregator = label_aggregator_class(**args.label_aggregator_conf)
|
|
else:
|
|
label_aggregator = None
|
|
|
|
model_class = model_choices.get_class(args.model)
|
|
model = model_class(
|
|
vocab_size=vocab_size,
|
|
frontend=frontend,
|
|
specaug=specaug,
|
|
profileaug=profileaug,
|
|
normalize=normalize,
|
|
label_aggregator=label_aggregator,
|
|
encoder=encoder,
|
|
speaker_encoder=speaker_encoder,
|
|
ci_scorer=ci_scorer,
|
|
cd_scorer=cd_scorer,
|
|
decoder=decoder,
|
|
token_list=token_list,
|
|
**args.model_conf,
|
|
)
|
|
|
|
elif args.model == "eend_ola":
|
|
# encoder
|
|
encoder_class = encoder_choices.get_class(args.encoder)
|
|
encoder = encoder_class(**args.encoder_conf)
|
|
|
|
# encoder-decoder attractor
|
|
encoder_decoder_attractor_class = encoder_decoder_attractor_choices.get_class(args.encoder_decoder_attractor)
|
|
encoder_decoder_attractor = encoder_decoder_attractor_class(**args.encoder_decoder_attractor_conf)
|
|
|
|
# 9. Build model
|
|
model_class = model_choices.get_class(args.model)
|
|
model = model_class(
|
|
frontend=frontend,
|
|
encoder=encoder,
|
|
encoder_decoder_attractor=encoder_decoder_attractor,
|
|
**args.model_conf,
|
|
)
|
|
|
|
else:
|
|
raise NotImplementedError("Not supported model: {}".format(args.model))
|
|
|
|
# 10. Initialize
|
|
if args.init is not None:
|
|
initialize(model, args.init)
|
|
|
|
return model
|