FunASR/egs/alimeeting/diarization/sond/unit_test_modelscope.py
2023-02-27 16:44:06 +08:00

93 lines
3.1 KiB
Python

from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
import numpy as np
import os
def test_wav_cpu_infer():
output_dir = "./outputs"
data_path_and_name_and_type = [
"data/unit_test/test_wav.scp,speech,sound",
"data/unit_test/test_profile.scp,profile,kaldi_ark",
]
diar_pipeline = pipeline(
task=Tasks.speaker_diarization,
model='damo/speech_diarization_sond-zh-cn-alimeeting-16k-n16k4-pytorch',
mode="sond",
output_dir=output_dir,
num_workers=0,
log_level="WARNING",
)
results = diar_pipeline(data_path_and_name_and_type)
print(results)
def test_wav_gpu_infer():
output_dir = "./outputs"
data_path_and_name_and_type = [
"data/unit_test/test_wav.scp,speech,sound",
"data/unit_test/test_profile.scp,profile,kaldi_ark",
]
diar_pipeline = pipeline(
task=Tasks.speaker_diarization,
model='damo/speech_diarization_sond-zh-cn-alimeeting-16k-n16k4-pytorch',
mode="sond",
output_dir=output_dir,
num_workers=0,
log_level="WARNING",
)
results = diar_pipeline(data_path_and_name_and_type)
print(results)
def test_without_profile_gpu_infer():
raw_inputs = [
"data/unit_test/raw_inputs/record.wav",
"data/unit_test/raw_inputs/spk1.wav",
"data/unit_test/raw_inputs/spk2.wav",
"data/unit_test/raw_inputs/spk3.wav",
"data/unit_test/raw_inputs/spk4.wav"
]
diar_pipeline = pipeline(
task=Tasks.speaker_diarization,
model='damo/speech_diarization_sond-zh-cn-alimeeting-16k-n16k4-pytorch',
mode="sond_demo",
sv_model="damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch",
sv_model_revision="master",
num_workers=0,
log_level="WARNING",
param_dict={},
)
results = diar_pipeline(raw_inputs)
print(results)
def test_url_without_profile_gpu_infer():
raw_inputs = [
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_data/speaker_diarization/record.wav",
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_data/speaker_diarization/spk1.wav",
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_data/speaker_diarization/spk2.wav",
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_data/speaker_diarization/spk3.wav",
"https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_data/speaker_diarization/spk4.wav",
]
diar_pipeline = pipeline(
task=Tasks.speaker_diarization,
model='damo/speech_diarization_sond-zh-cn-alimeeting-16k-n16k4-pytorch',
mode="sond_demo",
sv_model="damo/speech_xvector_sv-zh-cn-cnceleb-16k-spk3465-pytorch",
sv_model_revision="master",
num_workers=0,
log_level="WARNING",
param_dict={},
)
results = diar_pipeline(raw_inputs)
print(results)
if __name__ == '__main__':
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
test_wav_cpu_infer()
test_wav_gpu_infer()
test_without_profile_gpu_infer()
test_url_without_profile_gpu_infer()