mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
* update * update setup * update setup * update setup * update setup * update setup * update setup * update * update * update setup
304 lines
11 KiB
Python
304 lines
11 KiB
Python
from abc import ABC
|
|
from abc import abstractmethod
|
|
|
|
from funasr.modules.scorers.scorer_interface import BatchScorerInterface
|
|
from typing import Dict
|
|
from typing import Optional
|
|
from typing import Tuple
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from funasr.modules.nets_utils import make_pad_mask
|
|
from funasr.torch_utils.device_funcs import force_gatherable
|
|
from funasr.models.base_model import FunASRModel
|
|
|
|
class AbsLM(torch.nn.Module, BatchScorerInterface, ABC):
|
|
"""The abstract LM class
|
|
|
|
To share the loss calculation way among different models,
|
|
We uses delegate pattern here:
|
|
The instance of this class should be passed to "LanguageModel"
|
|
|
|
This "model" is one of mediator objects for "Task" class.
|
|
|
|
"""
|
|
|
|
@abstractmethod
|
|
def forward(
|
|
self, input: torch.Tensor, hidden: torch.Tensor
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
raise NotImplementedError
|
|
|
|
|
|
class LanguageModel(FunASRModel):
|
|
def __init__(self, lm: AbsLM, vocab_size: int, ignore_id: int = 0):
|
|
super().__init__()
|
|
self.lm = lm
|
|
self.sos = 1
|
|
self.eos = 2
|
|
|
|
# ignore_id may be assumed as 0, shared with CTC-blank symbol for ASR.
|
|
self.ignore_id = ignore_id
|
|
|
|
def nll(
|
|
self,
|
|
text: torch.Tensor,
|
|
text_lengths: torch.Tensor,
|
|
max_length: Optional[int] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Compute negative log likelihood(nll)
|
|
|
|
Normally, this function is called in batchify_nll.
|
|
Args:
|
|
text: (Batch, Length)
|
|
text_lengths: (Batch,)
|
|
max_lengths: int
|
|
"""
|
|
batch_size = text.size(0)
|
|
# For data parallel
|
|
if max_length is None:
|
|
text = text[:, : text_lengths.max()]
|
|
else:
|
|
text = text[:, :max_length]
|
|
|
|
# 1. Create a sentence pair like '<sos> w1 w2 w3' and 'w1 w2 w3 <eos>'
|
|
# text: (Batch, Length) -> x, y: (Batch, Length + 1)
|
|
x = F.pad(text, [1, 0], "constant", self.sos)
|
|
t = F.pad(text, [0, 1], "constant", self.ignore_id)
|
|
for i, l in enumerate(text_lengths):
|
|
t[i, l] = self.eos
|
|
x_lengths = text_lengths + 1
|
|
|
|
# 2. Forward Language model
|
|
# x: (Batch, Length) -> y: (Batch, Length, NVocab)
|
|
y, _ = self.lm(x, None)
|
|
|
|
# 3. Calc negative log likelihood
|
|
# nll: (BxL,)
|
|
nll = F.cross_entropy(y.view(-1, y.shape[-1]), t.view(-1), reduction="none")
|
|
# nll: (BxL,) -> (BxL,)
|
|
if max_length is None:
|
|
nll.masked_fill_(make_pad_mask(x_lengths).to(nll.device).view(-1), 0.0)
|
|
else:
|
|
nll.masked_fill_(
|
|
make_pad_mask(x_lengths, maxlen=max_length + 1).to(nll.device).view(-1),
|
|
0.0,
|
|
)
|
|
# nll: (BxL,) -> (B, L)
|
|
nll = nll.view(batch_size, -1)
|
|
return nll, x_lengths
|
|
|
|
def batchify_nll(
|
|
self, text: torch.Tensor, text_lengths: torch.Tensor, batch_size: int = 100
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Compute negative log likelihood(nll) from transformer language model
|
|
|
|
To avoid OOM, this fuction seperate the input into batches.
|
|
Then call nll for each batch and combine and return results.
|
|
Args:
|
|
text: (Batch, Length)
|
|
text_lengths: (Batch,)
|
|
batch_size: int, samples each batch contain when computing nll,
|
|
you may change this to avoid OOM or increase
|
|
|
|
"""
|
|
total_num = text.size(0)
|
|
if total_num <= batch_size:
|
|
nll, x_lengths = self.nll(text, text_lengths)
|
|
else:
|
|
nlls = []
|
|
x_lengths = []
|
|
max_length = text_lengths.max()
|
|
|
|
start_idx = 0
|
|
while True:
|
|
end_idx = min(start_idx + batch_size, total_num)
|
|
batch_text = text[start_idx:end_idx, :]
|
|
batch_text_lengths = text_lengths[start_idx:end_idx]
|
|
# batch_nll: [B * T]
|
|
batch_nll, batch_x_lengths = self.nll(
|
|
batch_text, batch_text_lengths, max_length=max_length
|
|
)
|
|
nlls.append(batch_nll)
|
|
x_lengths.append(batch_x_lengths)
|
|
start_idx = end_idx
|
|
if start_idx == total_num:
|
|
break
|
|
nll = torch.cat(nlls)
|
|
x_lengths = torch.cat(x_lengths)
|
|
assert nll.size(0) == total_num
|
|
assert x_lengths.size(0) == total_num
|
|
return nll, x_lengths
|
|
|
|
def forward(
|
|
self, text: torch.Tensor, text_lengths: torch.Tensor
|
|
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
|
nll, y_lengths = self.nll(text, text_lengths)
|
|
ntokens = y_lengths.sum()
|
|
loss = nll.sum() / ntokens
|
|
stats = dict(loss=loss.detach())
|
|
|
|
# force_gatherable: to-device and to-tensor if scalar for DataParallel
|
|
loss, stats, weight = force_gatherable((loss, stats, ntokens), loss.device)
|
|
return loss, stats, weight
|
|
|
|
def collect_feats(
|
|
self, text: torch.Tensor, text_lengths: torch.Tensor
|
|
) -> Dict[str, torch.Tensor]:
|
|
return {}
|
|
|
|
|
|
class PunctuationModel(FunASRModel):
|
|
|
|
def __init__(self, punc_model: torch.nn.Module, vocab_size: int, ignore_id: int = 0, punc_weight: list = None):
|
|
super().__init__()
|
|
self.punc_model = punc_model
|
|
self.punc_weight = torch.Tensor(punc_weight)
|
|
self.sos = 1
|
|
self.eos = 2
|
|
|
|
# ignore_id may be assumed as 0, shared with CTC-blank symbol for ASR.
|
|
self.ignore_id = ignore_id
|
|
# if self.punc_model.with_vad():
|
|
# print("This is a vad puncuation model.")
|
|
|
|
def nll(
|
|
self,
|
|
text: torch.Tensor,
|
|
punc: torch.Tensor,
|
|
text_lengths: torch.Tensor,
|
|
punc_lengths: torch.Tensor,
|
|
max_length: Optional[int] = None,
|
|
vad_indexes: Optional[torch.Tensor] = None,
|
|
vad_indexes_lengths: Optional[torch.Tensor] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Compute negative log likelihood(nll)
|
|
|
|
Normally, this function is called in batchify_nll.
|
|
Args:
|
|
text: (Batch, Length)
|
|
punc: (Batch, Length)
|
|
text_lengths: (Batch,)
|
|
max_lengths: int
|
|
"""
|
|
batch_size = text.size(0)
|
|
# For data parallel
|
|
if max_length is None:
|
|
text = text[:, :text_lengths.max()]
|
|
punc = punc[:, :text_lengths.max()]
|
|
else:
|
|
text = text[:, :max_length]
|
|
punc = punc[:, :max_length]
|
|
|
|
if self.punc_model.with_vad():
|
|
# Should be VadRealtimeTransformer
|
|
assert vad_indexes is not None
|
|
y, _ = self.punc_model(text, text_lengths, vad_indexes)
|
|
else:
|
|
# Should be TargetDelayTransformer,
|
|
y, _ = self.punc_model(text, text_lengths)
|
|
|
|
# Calc negative log likelihood
|
|
# nll: (BxL,)
|
|
if self.training == False:
|
|
_, indices = y.view(-1, y.shape[-1]).topk(1, dim=1)
|
|
from sklearn.metrics import f1_score
|
|
f1_score = f1_score(punc.view(-1).detach().cpu().numpy(),
|
|
indices.squeeze(-1).detach().cpu().numpy(),
|
|
average='micro')
|
|
nll = torch.Tensor([f1_score]).repeat(text_lengths.sum())
|
|
return nll, text_lengths
|
|
else:
|
|
self.punc_weight = self.punc_weight.to(punc.device)
|
|
nll = F.cross_entropy(y.view(-1, y.shape[-1]), punc.view(-1), self.punc_weight, reduction="none",
|
|
ignore_index=self.ignore_id)
|
|
# nll: (BxL,) -> (BxL,)
|
|
if max_length is None:
|
|
nll.masked_fill_(make_pad_mask(text_lengths).to(nll.device).view(-1), 0.0)
|
|
else:
|
|
nll.masked_fill_(
|
|
make_pad_mask(text_lengths, maxlen=max_length + 1).to(nll.device).view(-1),
|
|
0.0,
|
|
)
|
|
# nll: (BxL,) -> (B, L)
|
|
nll = nll.view(batch_size, -1)
|
|
return nll, text_lengths
|
|
|
|
def batchify_nll(self,
|
|
text: torch.Tensor,
|
|
punc: torch.Tensor,
|
|
text_lengths: torch.Tensor,
|
|
punc_lengths: torch.Tensor,
|
|
batch_size: int = 100) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Compute negative log likelihood(nll) from transformer language model
|
|
|
|
To avoid OOM, this fuction seperate the input into batches.
|
|
Then call nll for each batch and combine and return results.
|
|
Args:
|
|
text: (Batch, Length)
|
|
punc: (Batch, Length)
|
|
text_lengths: (Batch,)
|
|
batch_size: int, samples each batch contain when computing nll,
|
|
you may change this to avoid OOM or increase
|
|
|
|
"""
|
|
total_num = text.size(0)
|
|
if total_num <= batch_size:
|
|
nll, x_lengths = self.nll(text, punc, text_lengths)
|
|
else:
|
|
nlls = []
|
|
x_lengths = []
|
|
max_length = text_lengths.max()
|
|
|
|
start_idx = 0
|
|
while True:
|
|
end_idx = min(start_idx + batch_size, total_num)
|
|
batch_text = text[start_idx:end_idx, :]
|
|
batch_punc = punc[start_idx:end_idx, :]
|
|
batch_text_lengths = text_lengths[start_idx:end_idx]
|
|
# batch_nll: [B * T]
|
|
batch_nll, batch_x_lengths = self.nll(batch_text, batch_punc, batch_text_lengths, max_length=max_length)
|
|
nlls.append(batch_nll)
|
|
x_lengths.append(batch_x_lengths)
|
|
start_idx = end_idx
|
|
if start_idx == total_num:
|
|
break
|
|
nll = torch.cat(nlls)
|
|
x_lengths = torch.cat(x_lengths)
|
|
assert nll.size(0) == total_num
|
|
assert x_lengths.size(0) == total_num
|
|
return nll, x_lengths
|
|
|
|
def forward(
|
|
self,
|
|
text: torch.Tensor,
|
|
punc: torch.Tensor,
|
|
text_lengths: torch.Tensor,
|
|
punc_lengths: torch.Tensor,
|
|
vad_indexes: Optional[torch.Tensor] = None,
|
|
vad_indexes_lengths: Optional[torch.Tensor] = None,
|
|
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
|
nll, y_lengths = self.nll(text, punc, text_lengths, punc_lengths, vad_indexes=vad_indexes)
|
|
ntokens = y_lengths.sum()
|
|
loss = nll.sum() / ntokens
|
|
stats = dict(loss=loss.detach())
|
|
|
|
# force_gatherable: to-device and to-tensor if scalar for DataParallel
|
|
loss, stats, weight = force_gatherable((loss, stats, ntokens), loss.device)
|
|
return loss, stats, weight
|
|
|
|
def collect_feats(self, text: torch.Tensor, punc: torch.Tensor,
|
|
text_lengths: torch.Tensor) -> Dict[str, torch.Tensor]:
|
|
return {}
|
|
|
|
def inference(self,
|
|
text: torch.Tensor,
|
|
text_lengths: torch.Tensor,
|
|
vad_indexes: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, None]:
|
|
if self.punc_model.with_vad():
|
|
assert vad_indexes is not None
|
|
return self.punc_model(text, text_lengths, vad_indexes)
|
|
else:
|
|
return self.punc_model(text, text_lengths)
|