FunASR/funasr/export/export_conformer.py
2023-07-14 17:43:40 +08:00

152 lines
4.9 KiB
Python

import json
from typing import Union, Dict
from pathlib import Path
import os
import logging
import torch
from funasr.export.models import get_model
import numpy as np
import random
from funasr.utils.types import str2bool, str2triple_str
# torch_version = float(".".join(torch.__version__.split(".")[:2]))
# assert torch_version > 1.9
class ModelExport:
def __init__(
self,
cache_dir: Union[Path, str] = None,
onnx: bool = True,
device: str = "cpu",
quant: bool = True,
fallback_num: int = 0,
audio_in: str = None,
calib_num: int = 200,
model_revision: str = None,
):
self.set_all_random_seed(0)
self.cache_dir = cache_dir
self.export_config = dict(
feats_dim=560,
onnx=False,
)
self.onnx = onnx
self.device = device
self.quant = quant
self.fallback_num = fallback_num
self.frontend = None
self.audio_in = audio_in
self.calib_num = calib_num
self.model_revision = model_revision
def _export(
self,
model,
model_dir: str = None,
verbose: bool = False,
):
export_dir = model_dir
os.makedirs(export_dir, exist_ok=True)
self.export_config["model_name"] = "model"
model = get_model(
model,
self.export_config,
)
model.eval()
if self.onnx:
self._export_onnx(model, verbose, export_dir)
print("output dir: {}".format(export_dir))
def _export_onnx(self, model, verbose, path):
model._export_onnx(verbose, path)
def set_all_random_seed(self, seed: int):
random.seed(seed)
np.random.seed(seed)
torch.random.manual_seed(seed)
def parse_audio_in(self, audio_in):
wav_list, name_list = [], []
if audio_in.endswith(".scp"):
f = open(audio_in, 'r')
lines = f.readlines()[:self.calib_num]
for line in lines:
name, path = line.strip().split()
name_list.append(name)
wav_list.append(path)
else:
wav_list = [audio_in,]
name_list = ["test",]
return wav_list, name_list
def load_feats(self, audio_in: str = None):
import torchaudio
wav_list, name_list = self.parse_audio_in(audio_in)
feats = []
feats_len = []
for line in wav_list:
path = line.strip()
waveform, sampling_rate = torchaudio.load(path)
if sampling_rate != self.frontend.fs:
waveform = torchaudio.transforms.Resample(orig_freq=sampling_rate,
new_freq=self.frontend.fs)(waveform)
fbank, fbank_len = self.frontend(waveform, [waveform.size(1)])
feats.append(fbank)
feats_len.append(fbank_len)
return feats, feats_len
def export(self,
mode: str = None,
):
if mode.startswith('conformer'):
from funasr.tasks.asr import ASRTask
config = os.path.join(model_dir, 'config.yaml')
model_file = os.path.join(model_dir, 'model.pb')
cmvn_file = os.path.join(model_dir, 'am.mvn')
model, asr_train_args = ASRTask.build_model_from_file(
config, model_file, cmvn_file, 'cpu'
)
self.frontend = model.frontend
self.export_config["feats_dim"] = 560
self._export(model, self.cache_dir)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
# parser.add_argument('--model-name', type=str, required=True)
parser.add_argument('--model-name', type=str, action="append", required=True, default=[])
parser.add_argument('--export-dir', type=str, required=True)
parser.add_argument('--type', type=str, default='onnx', help='["onnx", "torch"]')
parser.add_argument('--device', type=str, default='cpu', help='["cpu", "cuda"]')
parser.add_argument('--quantize', type=str2bool, default=False, help='export quantized model')
parser.add_argument('--fallback-num', type=int, default=0, help='amp fallback number')
parser.add_argument('--audio_in', type=str, default=None, help='["wav", "wav.scp"]')
parser.add_argument('--calib_num', type=int, default=200, help='calib max num')
parser.add_argument('--model_revision', type=str, default=None, help='model_revision')
args = parser.parse_args()
export_model = ModelExport(
cache_dir=args.export_dir,
onnx=args.type == 'onnx',
device=args.device,
quant=args.quantize,
fallback_num=args.fallback_num,
audio_in=args.audio_in,
calib_num=args.calib_num,
model_revision=args.model_revision,
)
for model_name in args.model_name:
print("export model: {}".format(model_name))
export_model.export(model_name)