mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
152 lines
4.9 KiB
Python
152 lines
4.9 KiB
Python
import json
|
|
from typing import Union, Dict
|
|
from pathlib import Path
|
|
|
|
import os
|
|
import logging
|
|
import torch
|
|
|
|
from funasr.export.models import get_model
|
|
import numpy as np
|
|
import random
|
|
from funasr.utils.types import str2bool, str2triple_str
|
|
# torch_version = float(".".join(torch.__version__.split(".")[:2]))
|
|
# assert torch_version > 1.9
|
|
|
|
class ModelExport:
|
|
def __init__(
|
|
self,
|
|
cache_dir: Union[Path, str] = None,
|
|
onnx: bool = True,
|
|
device: str = "cpu",
|
|
quant: bool = True,
|
|
fallback_num: int = 0,
|
|
audio_in: str = None,
|
|
calib_num: int = 200,
|
|
model_revision: str = None,
|
|
):
|
|
self.set_all_random_seed(0)
|
|
|
|
self.cache_dir = cache_dir
|
|
self.export_config = dict(
|
|
feats_dim=560,
|
|
onnx=False,
|
|
)
|
|
|
|
self.onnx = onnx
|
|
self.device = device
|
|
self.quant = quant
|
|
self.fallback_num = fallback_num
|
|
self.frontend = None
|
|
self.audio_in = audio_in
|
|
self.calib_num = calib_num
|
|
self.model_revision = model_revision
|
|
|
|
def _export(
|
|
self,
|
|
model,
|
|
model_dir: str = None,
|
|
verbose: bool = False,
|
|
):
|
|
|
|
export_dir = model_dir
|
|
os.makedirs(export_dir, exist_ok=True)
|
|
|
|
self.export_config["model_name"] = "model"
|
|
model = get_model(
|
|
model,
|
|
self.export_config,
|
|
)
|
|
model.eval()
|
|
|
|
if self.onnx:
|
|
self._export_onnx(model, verbose, export_dir)
|
|
|
|
print("output dir: {}".format(export_dir))
|
|
|
|
def _export_onnx(self, model, verbose, path):
|
|
model._export_onnx(verbose, path)
|
|
|
|
def set_all_random_seed(self, seed: int):
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
torch.random.manual_seed(seed)
|
|
|
|
def parse_audio_in(self, audio_in):
|
|
|
|
wav_list, name_list = [], []
|
|
if audio_in.endswith(".scp"):
|
|
f = open(audio_in, 'r')
|
|
lines = f.readlines()[:self.calib_num]
|
|
for line in lines:
|
|
name, path = line.strip().split()
|
|
name_list.append(name)
|
|
wav_list.append(path)
|
|
else:
|
|
wav_list = [audio_in,]
|
|
name_list = ["test",]
|
|
return wav_list, name_list
|
|
|
|
def load_feats(self, audio_in: str = None):
|
|
import torchaudio
|
|
|
|
wav_list, name_list = self.parse_audio_in(audio_in)
|
|
feats = []
|
|
feats_len = []
|
|
for line in wav_list:
|
|
path = line.strip()
|
|
waveform, sampling_rate = torchaudio.load(path)
|
|
if sampling_rate != self.frontend.fs:
|
|
waveform = torchaudio.transforms.Resample(orig_freq=sampling_rate,
|
|
new_freq=self.frontend.fs)(waveform)
|
|
fbank, fbank_len = self.frontend(waveform, [waveform.size(1)])
|
|
feats.append(fbank)
|
|
feats_len.append(fbank_len)
|
|
return feats, feats_len
|
|
|
|
def export(self,
|
|
mode: str = None,
|
|
):
|
|
|
|
if mode.startswith('conformer'):
|
|
from funasr.tasks.asr import ASRTask
|
|
config = os.path.join(model_dir, 'config.yaml')
|
|
model_file = os.path.join(model_dir, 'model.pb')
|
|
cmvn_file = os.path.join(model_dir, 'am.mvn')
|
|
model, asr_train_args = ASRTask.build_model_from_file(
|
|
config, model_file, cmvn_file, 'cpu'
|
|
)
|
|
self.frontend = model.frontend
|
|
self.export_config["feats_dim"] = 560
|
|
|
|
self._export(model, self.cache_dir)
|
|
|
|
if __name__ == '__main__':
|
|
import argparse
|
|
parser = argparse.ArgumentParser()
|
|
# parser.add_argument('--model-name', type=str, required=True)
|
|
parser.add_argument('--model-name', type=str, action="append", required=True, default=[])
|
|
parser.add_argument('--export-dir', type=str, required=True)
|
|
parser.add_argument('--type', type=str, default='onnx', help='["onnx", "torch"]')
|
|
parser.add_argument('--device', type=str, default='cpu', help='["cpu", "cuda"]')
|
|
parser.add_argument('--quantize', type=str2bool, default=False, help='export quantized model')
|
|
parser.add_argument('--fallback-num', type=int, default=0, help='amp fallback number')
|
|
parser.add_argument('--audio_in', type=str, default=None, help='["wav", "wav.scp"]')
|
|
parser.add_argument('--calib_num', type=int, default=200, help='calib max num')
|
|
parser.add_argument('--model_revision', type=str, default=None, help='model_revision')
|
|
args = parser.parse_args()
|
|
|
|
export_model = ModelExport(
|
|
cache_dir=args.export_dir,
|
|
onnx=args.type == 'onnx',
|
|
device=args.device,
|
|
quant=args.quantize,
|
|
fallback_num=args.fallback_num,
|
|
audio_in=args.audio_in,
|
|
calib_num=args.calib_num,
|
|
model_revision=args.model_revision,
|
|
)
|
|
for model_name in args.model_name:
|
|
print("export model: {}".format(model_name))
|
|
export_model.export(model_name)
|