mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
* trainer * trainer * trainer * trainer * trainer * trainer * trainer * trainer * trainer * trainer * trainer
33 lines
1.2 KiB
Python
33 lines
1.2 KiB
Python
|
|
import torch
|
|
from torch.optim.lr_scheduler import _LRScheduler
|
|
|
|
class CustomLambdaLR(_LRScheduler):
|
|
def __init__(self, optimizer, warmup_steps, last_epoch=-1):
|
|
self.warmup_steps = warmup_steps
|
|
super().__init__(optimizer, last_epoch)
|
|
|
|
def get_lr(self):
|
|
if self.last_epoch < self.warmup_steps:
|
|
return [
|
|
base_lr * min(self.last_epoch / self.warmup_steps, 1)
|
|
for base_lr in self.base_lrs
|
|
]
|
|
else:
|
|
return [base_lr for base_lr in self.base_lrs]
|
|
|
|
|
|
class CustomLambdaLR(_LRScheduler):
|
|
def __init__(self, optimizer, train_config, last_epoch=-1, verbose=False):
|
|
self.warmup_steps = train_config.warmup_steps
|
|
self.total_steps = train_config.total_steps
|
|
super(CustomLambdaLR, self).__init__(optimizer, last_epoch, verbose)
|
|
|
|
def get_lr(self):
|
|
step = self._step_count
|
|
if step < self.warmup_steps:
|
|
lr_scale = step / self.warmup_steps
|
|
else:
|
|
lr_scale = max(0.0, 1 - (step - self.warmup_steps) / (self.total_steps - self.warmup_steps))
|
|
return [base_lr * lr_scale for base_lr in self.base_lrs]
|