FunASR/funasr/models/seaco_paraformer/export_meta.py
Shi Xian e04489ce4c
contextual&seaco ONNX export (#1481)
* contextual&seaco ONNX export

* update ContextualEmbedderExport2

* update ContextualEmbedderExport2

* update code

* onnx (#1482)

* qwenaudio qwenaudiochat

* qwenaudio qwenaudiochat

* whisper

* whisper

* llm

* llm

* llm

* llm

* llm

* llm

* llm

* llm

* export onnx

* export onnx

* export onnx

* dingding

* dingding

* llm

* doc

* onnx

* onnx

* onnx

* onnx

* onnx

* onnx

* v1.0.15

* qwenaudio

* qwenaudio

* issue doc

* update

* update

* bugfix

* onnx

* update export calling

* update codes

* remove useless code

* update code

---------

Co-authored-by: zhifu gao <zhifu.gzf@alibaba-inc.com>
2024-03-13 16:34:42 +08:00

181 lines
6.5 KiB
Python

#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import torch
from funasr.register import tables
class ContextualEmbedderExport(torch.nn.Module):
def __init__(self,
model,
max_seq_len=512,
feats_dim=560,
**kwargs,):
super().__init__()
self.embedding = model.decoder.embed # model.bias_embed
model.bias_encoder.batch_first = False
self.bias_encoder = model.bias_encoder
def forward(self, hotword):
hotword = self.embedding(hotword).transpose(0, 1) # batch second
hw_embed, (_, _) = self.bias_encoder(hotword)
return hw_embed
def export_dummy_inputs(self):
hotword = torch.tensor([
[10, 11, 12, 13, 14, 10, 11, 12, 13, 14],
[100, 101, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[10, 11, 12, 13, 14, 10, 11, 12, 13, 14],
[100, 101, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
],
dtype=torch.int32)
# hotword_length = torch.tensor([10, 2, 1], dtype=torch.int32)
return (hotword)
def export_input_names(self):
return ['hotword']
def export_output_names(self):
return ['hw_embed']
def export_dynamic_axes(self):
return {
'hotword': {
0: 'num_hotwords',
},
'hw_embed': {
0: 'num_hotwords',
},
}
def export_name(self):
return 'model_eb.onnx'
def export_rebuild_model(model, **kwargs):
model.device = kwargs.get("device")
is_onnx = kwargs.get("type", "onnx") == "onnx"
encoder_class = tables.encoder_classes.get(kwargs["encoder"]+"Export")
model.encoder = encoder_class(model.encoder, onnx=is_onnx)
predictor_class = tables.predictor_classes.get(kwargs["predictor"]+"Export")
model.predictor = predictor_class(model.predictor, onnx=is_onnx)
# before decoder convert into export class
embedder_class = ContextualEmbedderExport
embedder_model = embedder_class(model, onnx=is_onnx)
decoder_class = tables.decoder_classes.get(kwargs["decoder"]+"Export")
model.decoder = decoder_class(model.decoder, onnx=is_onnx)
seaco_decoder_class = tables.decoder_classes.get(kwargs["seaco_decoder"]+"Export")
model.seaco_decoder = seaco_decoder_class(model.seaco_decoder, onnx=is_onnx)
from funasr.utils.torch_function import sequence_mask
model.make_pad_mask = sequence_mask(kwargs["max_seq_len"], flip=False)
from funasr.utils.torch_function import sequence_mask
model.make_pad_mask = sequence_mask(kwargs["max_seq_len"], flip=False)
model.feats_dim = 560
model.NOBIAS = 8377
import copy
import types
backbone_model = copy.copy(model)
# backbone
backbone_model.forward = types.MethodType(export_backbone_forward, backbone_model)
backbone_model.export_dummy_inputs = types.MethodType(export_backbone_dummy_inputs, backbone_model)
backbone_model.export_input_names = types.MethodType(export_backbone_input_names, backbone_model)
backbone_model.export_output_names = types.MethodType(export_backbone_output_names, backbone_model)
backbone_model.export_dynamic_axes = types.MethodType(export_backbone_dynamic_axes, backbone_model)
backbone_model.export_name = types.MethodType(export_backbone_name, backbone_model)
return backbone_model, embedder_model
def export_backbone_forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
bias_embed: torch.Tensor,
# lmbd: float,
):
# a. To device
batch = {"speech": speech, "speech_lengths": speech_lengths}
enc, enc_len = self.encoder(**batch)
mask = self.make_pad_mask(enc_len)[:, None, :]
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = self.predictor(enc, mask)
pre_token_length = pre_token_length.floor().type(torch.int32)
decoder_out, decoder_hidden, _ = self.decoder(enc, enc_len, pre_acoustic_embeds, pre_token_length, return_hidden=True, return_both=True)
decoder_out = torch.log_softmax(decoder_out, dim=-1)
# seaco forward
B, N, D = bias_embed.shape
_contextual_length = torch.ones(B) * N
# ASF
hotword_scores = self.seaco_decoder.forward_asf6(bias_embed, _contextual_length, decoder_hidden, pre_token_length)
hotword_scores = hotword_scores[0].sum(0).sum(0)
# _ = self.decoder2(bias_embed, _contextual_length, decoder_hidden, pre_token_length)
# hotword_scores = self.decoder2.model.decoders[-1].attn_mat[0][0].sum(0).sum(0)
dec_filter = torch.sort(hotword_scores, descending=True)[1][:51]
contextual_info = bias_embed[:,dec_filter]
num_hot_word = contextual_info.shape[1]
_contextual_length = torch.Tensor([num_hot_word]).int().repeat(B).to(enc.device)
# again
cif_attended, _ = self.seaco_decoder(contextual_info, _contextual_length, pre_acoustic_embeds, pre_token_length)
dec_attended, _ = self.seaco_decoder(contextual_info, _contextual_length, decoder_hidden, pre_token_length)
merged = cif_attended + dec_attended
dha_output = self.hotword_output_layer(merged)
dha_pred = torch.log_softmax(dha_output, dim=-1)
# merging logits
dha_ids = dha_pred.max(-1)[-1]
dha_mask = (dha_ids == self.NOBIAS).int().unsqueeze(-1)
decoder_out = decoder_out * dha_mask + dha_pred * (1-dha_mask)
return decoder_out, pre_token_length, alphas
def export_backbone_dummy_inputs(self):
speech = torch.randn(2, 30, self.feats_dim)
speech_lengths = torch.tensor([15, 30], dtype=torch.int32)
bias_embed = torch.randn(2, 1, 512)
return (speech, speech_lengths, bias_embed)
def export_backbone_input_names(self):
return ['speech', 'speech_lengths', 'bias_embed']
def export_backbone_output_names(self):
return ['logits', 'token_num', 'alphas']
def export_backbone_dynamic_axes(self):
return {
'speech': {
0: 'batch_size',
1: 'feats_length'
},
'speech_lengths': {
0: 'batch_size',
},
'bias_embed': {
0: 'batch_size',
1: 'num_hotwords'
},
'logits': {
0: 'batch_size',
1: 'logits_length'
},
'pre_acoustic_embeds': {
1: 'feats_length1'
}
}
def export_backbone_name(self):
return 'model.onnx'