mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
174 lines
7.0 KiB
Python
174 lines
7.0 KiB
Python
import os
|
||
import torch
|
||
import json
|
||
import torch.distributed as dist
|
||
import numpy as np
|
||
import kaldiio
|
||
import librosa
|
||
import torchaudio
|
||
import time
|
||
import logging
|
||
from torch.nn.utils.rnn import pad_sequence
|
||
try:
|
||
from funasr.download.file import download_from_url
|
||
except:
|
||
print("urllib is not installed, if you infer from url, please install it first.")
|
||
import pdb
|
||
import subprocess
|
||
from subprocess import CalledProcessError, run
|
||
|
||
def is_ffmpeg_installed():
|
||
try:
|
||
# 尝试运行ffmpeg命令并获取其版本信息
|
||
output = subprocess.check_output(['ffmpeg', '-version'], stderr=subprocess.STDOUT)
|
||
return 'ffmpeg version' in output.decode('utf-8')
|
||
except (subprocess.CalledProcessError, FileNotFoundError):
|
||
# 若运行ffmpeg命令失败,则认为ffmpeg未安装
|
||
return False
|
||
|
||
use_ffmpeg=False
|
||
if is_ffmpeg_installed():
|
||
use_ffmpeg
|
||
else:
|
||
print("Warning: ffmpeg is not installed. torchaudio is used to load audio")
|
||
|
||
def load_audio_text_image_video(data_or_path_or_list, fs: int = 16000, audio_fs: int = 16000, data_type="sound", tokenizer=None, **kwargs):
|
||
if isinstance(data_or_path_or_list, (list, tuple)):
|
||
if data_type is not None and isinstance(data_type, (list, tuple)):
|
||
data_types = [data_type] * len(data_or_path_or_list)
|
||
data_or_path_or_list_ret = [[] for d in data_type]
|
||
for i, (data_type_i, data_or_path_or_list_i) in enumerate(zip(data_types, data_or_path_or_list)):
|
||
for j, (data_type_j, data_or_path_or_list_j) in enumerate(zip(data_type_i, data_or_path_or_list_i)):
|
||
data_or_path_or_list_j = load_audio_text_image_video(data_or_path_or_list_j, fs=fs, audio_fs=audio_fs, data_type=data_type_j, tokenizer=tokenizer, **kwargs)
|
||
data_or_path_or_list_ret[j].append(data_or_path_or_list_j)
|
||
|
||
return data_or_path_or_list_ret
|
||
else:
|
||
return [load_audio_text_image_video(audio, fs=fs, audio_fs=audio_fs, data_type=data_type, **kwargs) for audio in data_or_path_or_list]
|
||
if isinstance(data_or_path_or_list, str) and data_or_path_or_list.startswith('http'): # download url to local file
|
||
data_or_path_or_list = download_from_url(data_or_path_or_list)
|
||
|
||
if isinstance(data_or_path_or_list, str) and os.path.exists(data_or_path_or_list): # local file
|
||
if data_type is None or data_type == "sound":
|
||
if use_ffmpeg:
|
||
data_or_path_or_list = _load_audio_ffmpeg(data_or_path_or_list, sr=fs)
|
||
data_or_path_or_list = torch.from_numpy(data_or_path_or_list).squeeze() # [n_samples,]
|
||
else:
|
||
data_or_path_or_list, audio_fs = torchaudio.load(data_or_path_or_list)
|
||
if kwargs.get("reduce_channels", True):
|
||
data_or_path_or_list = data_or_path_or_list.mean(0)
|
||
elif data_type == "text" and tokenizer is not None:
|
||
data_or_path_or_list = tokenizer.encode(data_or_path_or_list)
|
||
elif data_type == "image": # undo
|
||
pass
|
||
elif data_type == "video": # undo
|
||
pass
|
||
|
||
# if data_in is a file or url, set is_final=True
|
||
if "cache" in kwargs:
|
||
kwargs["cache"]["is_final"] = True
|
||
kwargs["cache"]["is_streaming_input"] = False
|
||
elif isinstance(data_or_path_or_list, str) and data_type == "text" and tokenizer is not None:
|
||
data_or_path_or_list = tokenizer.encode(data_or_path_or_list)
|
||
elif isinstance(data_or_path_or_list, np.ndarray): # audio sample point
|
||
data_or_path_or_list = torch.from_numpy(data_or_path_or_list).squeeze() # [n_samples,]
|
||
elif isinstance(data_or_path_or_list, str) and data_type == "kaldi_ark":
|
||
data_mat = kaldiio.load_mat(data_or_path_or_list)
|
||
if isinstance(data_mat, tuple):
|
||
audio_fs, mat = data_mat
|
||
else:
|
||
mat = data_mat
|
||
if mat.dtype == 'int16' or mat.dtype == 'int32':
|
||
mat = mat.astype(np.float64)
|
||
mat = mat / 32768
|
||
if mat.ndim ==2:
|
||
mat = mat[:,0]
|
||
data_or_path_or_list = mat
|
||
else:
|
||
pass
|
||
# print(f"unsupport data type: {data_or_path_or_list}, return raw data")
|
||
|
||
if audio_fs != fs and data_type != "text":
|
||
resampler = torchaudio.transforms.Resample(audio_fs, fs)
|
||
data_or_path_or_list = resampler(data_or_path_or_list[None, :])[0, :]
|
||
return data_or_path_or_list
|
||
|
||
def load_bytes(input):
|
||
middle_data = np.frombuffer(input, dtype=np.int16)
|
||
middle_data = np.asarray(middle_data)
|
||
if middle_data.dtype.kind not in 'iu':
|
||
raise TypeError("'middle_data' must be an array of integers")
|
||
dtype = np.dtype('float32')
|
||
if dtype.kind != 'f':
|
||
raise TypeError("'dtype' must be a floating point type")
|
||
|
||
i = np.iinfo(middle_data.dtype)
|
||
abs_max = 2 ** (i.bits - 1)
|
||
offset = i.min + abs_max
|
||
array = np.frombuffer((middle_data.astype(dtype) - offset) / abs_max, dtype=np.float32)
|
||
return array
|
||
|
||
def extract_fbank(data, data_len = None, data_type: str="sound", frontend=None, **kwargs):
|
||
if isinstance(data, np.ndarray):
|
||
data = torch.from_numpy(data)
|
||
if len(data.shape) < 2:
|
||
data = data[None, :] # data: [batch, N]
|
||
data_len = [data.shape[1]] if data_len is None else data_len
|
||
elif isinstance(data, torch.Tensor):
|
||
if len(data.shape) < 2:
|
||
data = data[None, :] # data: [batch, N]
|
||
data_len = [data.shape[1]] if data_len is None else data_len
|
||
elif isinstance(data, (list, tuple)):
|
||
data_list, data_len = [], []
|
||
for data_i in data:
|
||
if isinstance(data_i, np.ndarray):
|
||
data_i = torch.from_numpy(data_i)
|
||
data_list.append(data_i)
|
||
data_len.append(data_i.shape[0])
|
||
data = pad_sequence(data_list, batch_first=True) # data: [batch, N]
|
||
|
||
data, data_len = frontend(data, data_len, **kwargs)
|
||
|
||
if isinstance(data_len, (list, tuple)):
|
||
data_len = torch.tensor([data_len])
|
||
return data.to(torch.float32), data_len.to(torch.int32)
|
||
|
||
def _load_audio_ffmpeg(file: str, sr: int = 16000):
|
||
"""
|
||
Open an audio file and read as mono waveform, resampling as necessary
|
||
|
||
Parameters
|
||
----------
|
||
file: str
|
||
The audio file to open
|
||
|
||
sr: int
|
||
The sample rate to resample the audio if necessary
|
||
|
||
Returns
|
||
-------
|
||
A NumPy array containing the audio waveform, in float32 dtype.
|
||
"""
|
||
|
||
# This launches a subprocess to decode audio while down-mixing
|
||
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
|
||
# fmt: off
|
||
cmd = [
|
||
"ffmpeg",
|
||
"-nostdin",
|
||
"-threads", "0",
|
||
"-i", file,
|
||
"-f", "s16le",
|
||
"-ac", "1",
|
||
"-acodec", "pcm_s16le",
|
||
"-ar", str(sr),
|
||
"-"
|
||
]
|
||
# fmt: on
|
||
try:
|
||
out = run(cmd, capture_output=True, check=True).stdout
|
||
except CalledProcessError as e:
|
||
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
||
|
||
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|