FunASR/egs/mars/sd/scripts/simu_chunk_with_labels.py
2023-02-23 23:03:40 +08:00

232 lines
9.4 KiB
Python

import logging
import numpy as np
import soundfile
import kaldiio
from funasr.utils.job_runner import MultiProcessRunnerV3
from funasr.utils.misc import load_scp_as_list, load_scp_as_dict
import os
import argparse
from collections import OrderedDict
import random
from typing import List, Dict
from copy import deepcopy
import json
class MyRunner(MultiProcessRunnerV3):
def prepare(self, parser: argparse.ArgumentParser):
parser.add_argument("--label_scp", type=str, required=True)
parser.add_argument("--wav_scp", type=str, required=True)
parser.add_argument("--utt2spk", type=str, required=True)
parser.add_argument("--spk2meeting", type=str, required=True)
parser.add_argument("--utt2xvec", type=str, required=True)
parser.add_argument("--out_dir", type=str, required=True)
parser.add_argument("--chunk_size", type=float, default=16)
parser.add_argument("--chunk_shift", type=float, default=4)
parser.add_argument("--frame_shift", type=float, default=0.01)
parser.add_argument("--embedding_dim", type=int, default=None)
parser.add_argument("--average_emb_num", type=int, default=0)
parser.add_argument("--subset", type=int, default=0)
parser.add_argument("--data_dict", type=str, default=None)
args = parser.parse_args()
if not os.path.exists(args.out_dir):
os.makedirs(args.out_dir)
args.chunk_size = int(args.chunk_size / args.frame_shift)
args.chunk_shift = int(args.chunk_shift / args.frame_shift)
if not os.path.exists(args.data_dict):
label_list = load_scp_as_list(args.label_scp)
wav_scp = load_scp_as_dict(args.wav_scp)
utt2spk = load_scp_as_dict(args.utt2spk)
utt2xvec = load_scp_as_dict(args.utt2xvec)
spk2meeting = load_scp_as_dict(args.spk2meeting)
if args.embedding_dim is None:
args.embedding_dim = kaldiio.load_mat(random.choice(utt2xvec)).shape[1]
logging.info("Embedding dim is detected as {}.".format(args.embedding_dim))
meeting2spks = OrderedDict()
for spk, meeting in spk2meeting.items():
if meeting not in meeting2spks:
meeting2spks[meeting] = []
meeting2spks[meeting].append(spk)
spk2utts = OrderedDict()
for utt, spk in utt2spk.items():
if spk not in spk2utts:
spk2utts[spk] = []
spk2utts[spk].append(utt)
os.makedirs(os.path.dirname(args.data_dict), exist_ok=True)
json.dump({
"label_list": label_list, "wav_scp": wav_scp, "utt2xvec": utt2xvec,
"spk2utts": spk2utts, "meeting2spks": meeting2spks
}, open(args.data_dict, "wt", encoding="utf-8"), ensure_ascii=False, indent=4)
else:
data_dict = json.load(open(args.data_dict, "rt", encoding="utf-8"))
label_list = data_dict["label_list"]
wav_scp = data_dict["wav_scp"]
utt2xvec = data_dict["utt2xvec"]
spk2utts = data_dict["spk2utts"]
meeting2spks = data_dict["meeting2spks"]
return label_list, (wav_scp, utt2xvec, spk2utts, meeting2spks), args
def post(self, results_list, args):
pass
def simu_wav_chunk(spk, spk2utts, wav_scp, sample_length):
utt_list = spk2utts[spk]
wav_list = []
cur_length = 0
while cur_length < sample_length:
uttid = random.choice(utt_list)
wav, fs = soundfile.read(wav_scp[uttid], dtype='float32')
wav_list.append(wav)
cur_length += len(wav)
concat_wav = np.concatenate(wav_list, axis=0)
start = random.randint(0, len(concat_wav) - sample_length)
return concat_wav[start:]
def calculate_embedding(spk, spk2utts, utt2xvec, embedding_dim, average_emb_num):
# process for dummy speaker
if spk == "None":
return np.zeros((1, embedding_dim), dtype=np.float32)
# calculate averaged speaker embeddings
utt_list = spk2utts[spk]
if average_emb_num == 0 or average_emb_num > len(utt_list):
xvec_list = [kaldiio.load_mat(utt2xvec[utt]) for utt in utt_list]
else:
xvec_list = [kaldiio.load_mat(utt2xvec[utt]) for utt in random.sample(utt_list, average_emb_num)]
# TODO: rerun the simulation
xvec_list = [x / np.linalg.norm(x, axis=-1) for x in xvec_list]
xvec = np.mean(np.concatenate(xvec_list, axis=0), axis=0)
return xvec
def simu_chunk(
frame_label: np.ndarray,
sample_label: np.ndarray,
wav_scp: Dict[str, str],
utt2xvec: Dict[str, str],
spk2utts: Dict[str, List[str]],
meeting2spks: Dict[str, List[str]],
all_speaker_list: List[str],
meeting_list: List[str],
embedding_dim: int,
average_emb_num: int,
):
frame_length, max_spk_num = frame_label.shape
sample_length = sample_label.shape[0]
positive_speaker_num = np.max(frame_label.sum(axis=1), axis=0)
pos_speaker_list = deepcopy(meeting2spks[random.choice(meeting_list)])
# get positive speakers
if len(pos_speaker_list) >= positive_speaker_num:
pos_speaker_list = random.sample(pos_speaker_list, positive_speaker_num)
else:
while len(pos_speaker_list) < positive_speaker_num:
_spk = random.choice(all_speaker_list)
if _spk not in pos_speaker_list:
pos_speaker_list.extend(_spk)
# get negative speakers
negative_speaker_num = random.randint(0, max_spk_num - positive_speaker_num)
neg_speaker_list = []
while len(neg_speaker_list) < negative_speaker_num:
_spk = random.choice(all_speaker_list)
if _spk not in pos_speaker_list and _spk not in neg_speaker_list:
neg_speaker_list.extend(_spk)
neg_speaker_list.extend(["None"] * (max_spk_num - positive_speaker_num - negative_speaker_num))
random.shuffle(pos_speaker_list)
random.shuffle(neg_speaker_list)
seperated_wav = np.zeros(frame_label.shape, dtype=np.float32)
this_spk_list = []
for idx, frame_num in enumerate(frame_label.sum(axis=0)):
if frame_num > 0:
spk = pos_speaker_list.pop(0)
this_spk_list.append(spk)
simu_spk_wav = simu_wav_chunk(spk, spk2utts, wav_scp, sample_length)
seperated_wav[:, idx] = simu_spk_wav
else:
spk = neg_speaker_list.pop(0)
this_spk_list.append(spk)
# calculate mixed wav
mixed_wav = np.sum(seperated_wav * sample_label, axis=1)
# shuffle the order of speakers
shuffle_idx = list(range(max_spk_num))
random.shuffle(shuffle_idx)
this_spk_list = [this_spk_list[x] for x in shuffle_idx]
seperated_wav = seperated_wav.transpose([0, 1])[shuffle_idx].transpose([0, 1])
frame_label = frame_label.transpose([0, 1])[shuffle_idx].transpose([0, 1])
# calculate profile and pse_label
profile = [calculate_embedding(spk, spk2utts, utt2xvec, embedding_dim, average_emb_num)
for spk in this_spk_list]
# pse_weights = 2 ** np.arange(max_spk_num)
# pse_label = np.sum(frame_label * pse_weights[np.newaxis, :], axis=1)
# pse_label = pse_label.astype(str).tolist()
return mixed_wav, seperated_wav, profile, frame_label
def process(task_args):
task_idx, task_list, (wav_scp, utt2xvec, spk2utts, meeting2spks), args = task_args
out_path = os.path.join(args.out_dir, "wav_mix.{}".format(task_idx+1))
wav_mix_writer = kaldiio.WriteHelper('ark,scp:{}.ark,{}.scp'.format(out_path, out_path))
out_path = os.path.join(args.out_dir, "wav_sep.{}".format(task_idx + 1))
wav_sep_writer = kaldiio.WriteHelper('ark,scp:{}.ark,{}.scp'.format(out_path, out_path))
out_path = os.path.join(args.out_dir, "profile.{}".format(task_idx + 1))
profile_writer = kaldiio.WriteHelper('ark,scp:{}.ark,{}.scp'.format(out_path, out_path))
out_path = os.path.join(args.out_dir, "frame_label.{}".format(task_idx + 1))
label_writer = kaldiio.WriteHelper('ark,scp:{}.ark,{}.scp'.format(out_path, out_path))
speaker_list, meeting_list = list(spk2utts.keys()), list(meeting2spks.keys())
idx = 0
for org_mid, label_path in task_list:
rand_shift = random.randint(0, int(args.chunk_shift / args.frame_shift))
whole_label = kaldiio.load_mat(label_path)
whole_label = whole_label[rand_shift:]
num_chunk = (whole_label.shape[0] - args.chunk_size) // args.chunk_shift + 1
for i in range(num_chunk):
idx = idx + 1
st = int((i*args.chunk_shift) / args.frame_shift)
ed = int((i*args.chunk_shift+args.chunk_size) / args.frame_shift)
utt_id = "subset{}_part{}_{}_{:06d}_{:06d}".format(
args.subset + 1, task_idx + 1, org_mid, st, ed
)
frame_label = whole_label[st: ed, :]
sample_label = frame_label.repeat(int(args.sr * args.frame_shift), axis=0)
mix_wav, seg_wav, profile, frame_label = simu_chunk(
frame_label, sample_label, wav_scp, utt2xvec, spk2utts, meeting2spks,
speaker_list, meeting_list, args.embedding_dim, args.average_emb_num
)
wav_mix_writer(utt_id, mix_wav)
wav_sep_writer(utt_id, seg_wav)
profile_writer(utt_id, profile)
label_writer(utt_id, frame_label)
wav_mix_writer.close()
wav_sep_writer.close()
profile_writer.close()
label_writer.close()
return None
if __name__ == '__main__':
my_runner = MyRunner(process)
my_runner.run()