FunASR/funasr/datasets/audio_datasets/samplers.py
zhifu gao 2ddfc27d5b
Funasr1.0 (#1343)
* funasr1.0.5

* funasr1.0.5 audio samples input

* batch_type token

* batch_type token
2024-02-01 17:29:28 +08:00

85 lines
3.0 KiB
Python

import torch
import numpy as np
from funasr.register import tables
@tables.register("batch_sampler_classes", "DynamicBatchLocalShuffleSampler")
class BatchSampler(torch.utils.data.BatchSampler):
def __init__(self, dataset,
batch_type: str = "example",
batch_size: int = 100,
buffer_size: int = 30,
drop_last: bool = False,
shuffle: bool = True,
is_training: bool = True,
**kwargs):
self.drop_last = drop_last
self.pre_idx = -1
self.dataset = dataset
self.total_samples = len(dataset)
self.batch_type = batch_type
self.batch_size = int(batch_size)
self.buffer_size = buffer_size
self.max_token_length = kwargs.get("max_token_length", 5000)
self.shuffle_idx = np.arange(self.total_samples)
self.shuffle = shuffle and is_training
self.length_scale_source = kwargs.get("length_scale_source", 1.0)
def __len__(self):
return (self.total_samples-1) // self.batch_size + 1
def set_epoch(self, epoch):
np.random.seed(epoch)
def __iter__(self):
if self.shuffle:
np.random.shuffle(self.shuffle_idx)
batch = []
max_token = 0
num_sample = 0
iter_num = (self.total_samples - 1) // self.buffer_size + 1
# print("iter_num: ", iter_num)
for iter in range(self.pre_idx + 1, iter_num):
datalen_with_index = []
for i in range(self.buffer_size):
idx = iter * self.buffer_size + i
if idx >= self.total_samples:
continue
idx_map = self.shuffle_idx[idx]
# prompt = self.dataset.indexed_dataset[idx_map]["prompt"]
target_len = self.dataset.get_target_len(idx_map) if self.batch_type == 'length' else 0.0
source_len = self.dataset.get_source_len(idx_map) / self.length_scale_source
sample_len_cur = source_len + target_len
datalen_with_index.append([idx, sample_len_cur])
datalen_with_index_sort = sorted(datalen_with_index, key=lambda x: x[1])
for item in datalen_with_index_sort:
idx, sample_len_cur_raw = item
if sample_len_cur_raw > self.max_token_length:
continue
max_token_cur = max(max_token, sample_len_cur_raw)
max_token_padding = 1 + num_sample
if self.batch_type != 'example':
max_token_padding *= max_token_cur
if max_token_padding <= self.batch_size:
batch.append(idx)
max_token = max_token_cur
num_sample += 1
else:
yield batch
batch = [idx]
max_token = sample_len_cur_raw
num_sample = 1