mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
211 lines
6.6 KiB
Python
Executable File
211 lines
6.6 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
import argparse
|
|
import logging
|
|
from pathlib import Path
|
|
import sys
|
|
from typing import Optional
|
|
from typing import Sequence
|
|
from typing import Tuple
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.nn.parallel import data_parallel
|
|
from typeguard import check_argument_types
|
|
|
|
from funasr.utils.cli_utils import get_commandline_args
|
|
from funasr.fileio.datadir_writer import DatadirWriter
|
|
from funasr.tasks.lm import LMTask
|
|
from funasr.torch_utils.device_funcs import to_device
|
|
from funasr.torch_utils.forward_adaptor import ForwardAdaptor
|
|
from funasr.torch_utils.set_all_random_seed import set_all_random_seed
|
|
from funasr.utils import config_argparse
|
|
from funasr.utils.types import float_or_none
|
|
from funasr.utils.types import str2bool
|
|
from funasr.utils.types import str2triple_str
|
|
from funasr.utils.types import str_or_none
|
|
|
|
|
|
def calc_perplexity(
|
|
output_dir: str,
|
|
batch_size: int,
|
|
dtype: str,
|
|
ngpu: int,
|
|
seed: int,
|
|
num_workers: int,
|
|
log_level: Union[int, str],
|
|
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
|
|
key_file: Optional[str],
|
|
train_config: Optional[str],
|
|
model_file: Optional[str],
|
|
log_base: Optional[float],
|
|
allow_variable_data_keys: bool,
|
|
):
|
|
assert check_argument_types()
|
|
logging.basicConfig(
|
|
level=log_level,
|
|
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
|
)
|
|
|
|
if ngpu >= 1:
|
|
device = "cuda"
|
|
else:
|
|
device = "cpu"
|
|
|
|
# 1. Set random-seed
|
|
set_all_random_seed(seed)
|
|
|
|
# 2. Build LM
|
|
model, train_args = LMTask.build_model_from_file(train_config, model_file, device)
|
|
# Wrape model to make model.nll() data-parallel
|
|
wrapped_model = ForwardAdaptor(model, "nll")
|
|
wrapped_model.to(dtype=getattr(torch, dtype)).eval()
|
|
logging.info(f"Model:\n{model}")
|
|
|
|
# 3. Build data-iterator
|
|
loader = LMTask.build_streaming_iterator(
|
|
data_path_and_name_and_type,
|
|
dtype=dtype,
|
|
batch_size=batch_size,
|
|
key_file=key_file,
|
|
num_workers=num_workers,
|
|
preprocess_fn=LMTask.build_preprocess_fn(train_args, False),
|
|
collate_fn=LMTask.build_collate_fn(train_args, False),
|
|
allow_variable_data_keys=allow_variable_data_keys,
|
|
inference=True,
|
|
)
|
|
|
|
# 4. Start for-loop
|
|
with DatadirWriter(output_dir) as writer:
|
|
total_nll = 0.0
|
|
total_ntokens = 0
|
|
for keys, batch in loader:
|
|
assert isinstance(batch, dict), type(batch)
|
|
assert all(isinstance(s, str) for s in keys), keys
|
|
_bs = len(next(iter(batch.values())))
|
|
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
|
|
|
with torch.no_grad():
|
|
batch = to_device(batch, device)
|
|
if ngpu <= 1:
|
|
# NOTE(kamo): data_parallel also should work with ngpu=1,
|
|
# but for debuggability it's better to keep this block.
|
|
nll, lengths = wrapped_model(**batch)
|
|
else:
|
|
nll, lengths = data_parallel(
|
|
wrapped_model, (), range(ngpu), module_kwargs=batch
|
|
)
|
|
|
|
assert _bs == len(nll) == len(lengths), (_bs, len(nll), len(lengths))
|
|
# nll: (B, L) -> (B,)
|
|
nll = nll.detach().cpu().numpy().sum(1)
|
|
# lengths: (B,)
|
|
lengths = lengths.detach().cpu().numpy()
|
|
total_nll += nll.sum()
|
|
total_ntokens += lengths.sum()
|
|
|
|
for key, _nll, ntoken in zip(keys, nll, lengths):
|
|
if log_base is None:
|
|
utt_ppl = np.exp(_nll / ntoken)
|
|
else:
|
|
utt_ppl = log_base ** (_nll / ntoken / np.log(log_base))
|
|
|
|
# Write PPL of each utts for debugging or analysis
|
|
writer["utt2ppl"][key] = str(utt_ppl)
|
|
writer["utt2ntokens"][key] = str(ntoken)
|
|
|
|
if log_base is None:
|
|
ppl = np.exp(total_nll / total_ntokens)
|
|
else:
|
|
ppl = log_base ** (total_nll / total_ntokens / np.log(log_base))
|
|
|
|
with (Path(output_dir) / "ppl").open("w", encoding="utf-8") as f:
|
|
f.write(f"{ppl}\n")
|
|
with (Path(output_dir) / "base").open("w", encoding="utf-8") as f:
|
|
if log_base is None:
|
|
_log_base = np.e
|
|
else:
|
|
_log_base = log_base
|
|
f.write(f"{_log_base}\n")
|
|
logging.info(f"PPL={ppl}")
|
|
|
|
|
|
def get_parser():
|
|
parser = config_argparse.ArgumentParser(
|
|
description="Calc perplexity",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
)
|
|
|
|
# Note(kamo): Use '_' instead of '-' as separator.
|
|
# '-' is confusing if written in yaml.
|
|
parser.add_argument(
|
|
"--log_level",
|
|
type=lambda x: x.upper(),
|
|
default="INFO",
|
|
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
|
|
help="The verbose level of logging",
|
|
)
|
|
|
|
parser.add_argument("--output_dir", type=str, required=True)
|
|
parser.add_argument(
|
|
"--ngpu",
|
|
type=int,
|
|
default=0,
|
|
help="The number of gpus. 0 indicates CPU mode",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=0, help="Random seed")
|
|
parser.add_argument(
|
|
"--dtype",
|
|
default="float32",
|
|
choices=["float16", "float32", "float64"],
|
|
help="Data type",
|
|
)
|
|
parser.add_argument(
|
|
"--num_workers",
|
|
type=int,
|
|
default=1,
|
|
help="The number of workers used for DataLoader",
|
|
)
|
|
parser.add_argument(
|
|
"--batch_size",
|
|
type=int,
|
|
default=1,
|
|
help="The batch size for inference",
|
|
)
|
|
parser.add_argument(
|
|
"--log_base",
|
|
type=float_or_none,
|
|
default=None,
|
|
help="The base of logarithm for Perplexity. "
|
|
"If None, napier's constant is used.",
|
|
)
|
|
|
|
group = parser.add_argument_group("Input data related")
|
|
group.add_argument(
|
|
"--data_path_and_name_and_type",
|
|
type=str2triple_str,
|
|
required=True,
|
|
action="append",
|
|
)
|
|
group.add_argument("--key_file", type=str_or_none)
|
|
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
|
|
|
|
group = parser.add_argument_group("The model configuration related")
|
|
group.add_argument("--train_config", type=str)
|
|
group.add_argument("--model_file", type=str)
|
|
|
|
return parser
|
|
|
|
|
|
def main(cmd=None):
|
|
print(get_commandline_args(), file=sys.stderr)
|
|
parser = get_parser()
|
|
args = parser.parse_args(cmd)
|
|
kwargs = vars(args)
|
|
kwargs.pop("config", None)
|
|
calc_perplexity(**kwargs)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|