mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
403 lines
15 KiB
Python
403 lines
15 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
|
# MIT License (https://opensource.org/licenses/MIT)
|
|
|
|
from contextlib import contextmanager
|
|
from distutils.version import LooseVersion
|
|
from itertools import permutations
|
|
from typing import Dict
|
|
from typing import Optional
|
|
from typing import Tuple
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.nn import functional as F
|
|
from typeguard import check_argument_types
|
|
|
|
from funasr.modules.nets_utils import to_device
|
|
from funasr.modules.nets_utils import make_pad_mask
|
|
from funasr.models.decoder.abs_decoder import AbsDecoder
|
|
from funasr.models.encoder.abs_encoder import AbsEncoder
|
|
from funasr.models.frontend.abs_frontend import AbsFrontend
|
|
from funasr.models.specaug.abs_specaug import AbsSpecAug
|
|
from funasr.layers.abs_normalize import AbsNormalize
|
|
from funasr.torch_utils.device_funcs import force_gatherable
|
|
from funasr.train.abs_espnet_model import AbsESPnetModel
|
|
|
|
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
|
|
from torch.cuda.amp import autocast
|
|
else:
|
|
# Nothing to do if torch<1.6.0
|
|
@contextmanager
|
|
def autocast(enabled=True):
|
|
yield
|
|
|
|
|
|
class DiarSondModel(AbsESPnetModel):
|
|
"""Speaker overlap-aware neural diarization model
|
|
reference: https://arxiv.org/abs/2211.10243
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size: int,
|
|
frontend: Optional[AbsFrontend],
|
|
specaug: Optional[AbsSpecAug],
|
|
normalize: Optional[AbsNormalize],
|
|
encoder: AbsEncoder,
|
|
speaker_encoder: AbsEncoder,
|
|
ci_scorer: torch.nn.Module,
|
|
cd_scorer: torch.nn.Module,
|
|
decoder: torch.nn.Module,
|
|
token_list: list,
|
|
lsm_weight: float = 0.1,
|
|
length_normalized_loss: bool = False,
|
|
max_spk_num: int = 16,
|
|
label_aggregator: Optional[torch.nn.Module] = None,
|
|
normlize_speech_speaker: bool = False,
|
|
):
|
|
assert check_argument_types()
|
|
|
|
super().__init__()
|
|
|
|
self.encoder = encoder
|
|
self.speaker_encoder = speaker_encoder
|
|
self.ci_scorer = ci_scorer
|
|
self.cd_scorer = cd_scorer
|
|
self.normalize = normalize
|
|
self.frontend = frontend
|
|
self.specaug = specaug
|
|
self.label_aggregator = label_aggregator
|
|
self.decoder = decoder
|
|
self.token_list = token_list
|
|
self.max_spk_num = max_spk_num
|
|
self.normalize_speech_speaker = normlize_speech_speaker
|
|
|
|
def forward(
|
|
self,
|
|
speech: torch.Tensor,
|
|
speech_lengths: torch.Tensor = None,
|
|
profile: torch.Tensor = None,
|
|
profile_lengths: torch.Tensor = None,
|
|
spk_labels: torch.Tensor = None,
|
|
spk_labels_lengths: torch.Tensor = None,
|
|
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
|
|
"""Frontend + Encoder + Speaker Encoder + CI Scorer + CD Scorer + Decoder + Calc loss
|
|
|
|
Args:
|
|
speech: (Batch, samples)
|
|
speech_lengths: (Batch,) default None for chunk interator,
|
|
because the chunk-iterator does not
|
|
have the speech_lengths returned.
|
|
see in
|
|
espnet2/iterators/chunk_iter_factory.py
|
|
profile: (Batch, N_spk, dim)
|
|
profile_lengths: (Batch,)
|
|
spk_labels: (Batch, )
|
|
"""
|
|
assert speech.shape[0] == spk_labels.shape[0], (speech.shape, spk_labels.shape)
|
|
batch_size = speech.shape[0]
|
|
|
|
# 1. Encoder
|
|
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
|
|
|
if self.attractor is None:
|
|
# 2a. Decoder (baiscally a predction layer after encoder_out)
|
|
pred = self.decoder(encoder_out, encoder_out_lens)
|
|
else:
|
|
# 2b. Encoder Decoder Attractors
|
|
# Shuffle the chronological order of encoder_out, then calculate attractor
|
|
encoder_out_shuffled = encoder_out.clone()
|
|
for i in range(len(encoder_out_lens)):
|
|
encoder_out_shuffled[i, : encoder_out_lens[i], :] = encoder_out[
|
|
i, torch.randperm(encoder_out_lens[i]), :
|
|
]
|
|
attractor, att_prob = self.attractor(
|
|
encoder_out_shuffled,
|
|
encoder_out_lens,
|
|
to_device(
|
|
self,
|
|
torch.zeros(
|
|
encoder_out.size(0), spk_labels.size(2) + 1, encoder_out.size(2)
|
|
),
|
|
),
|
|
)
|
|
# Remove the final attractor which does not correspond to a speaker
|
|
# Then multiply the attractors and encoder_out
|
|
pred = torch.bmm(encoder_out, attractor[:, :-1, :].permute(0, 2, 1))
|
|
# 3. Aggregate time-domain labels
|
|
if self.label_aggregator is not None:
|
|
spk_labels, spk_labels_lengths = self.label_aggregator(
|
|
spk_labels, spk_labels_lengths
|
|
)
|
|
|
|
# If encoder uses conv* as input_layer (i.e., subsampling),
|
|
# the sequence length of 'pred' might be slighly less than the
|
|
# length of 'spk_labels'. Here we force them to be equal.
|
|
length_diff_tolerance = 2
|
|
length_diff = spk_labels.shape[1] - pred.shape[1]
|
|
if length_diff > 0 and length_diff <= length_diff_tolerance:
|
|
spk_labels = spk_labels[:, 0 : pred.shape[1], :]
|
|
|
|
if self.attractor is None:
|
|
loss_pit, loss_att = None, None
|
|
loss, perm_idx, perm_list, label_perm = self.pit_loss(
|
|
pred, spk_labels, encoder_out_lens
|
|
)
|
|
else:
|
|
loss_pit, perm_idx, perm_list, label_perm = self.pit_loss(
|
|
pred, spk_labels, encoder_out_lens
|
|
)
|
|
loss_att = self.attractor_loss(att_prob, spk_labels)
|
|
loss = loss_pit + self.attractor_weight * loss_att
|
|
(
|
|
correct,
|
|
num_frames,
|
|
speech_scored,
|
|
speech_miss,
|
|
speech_falarm,
|
|
speaker_scored,
|
|
speaker_miss,
|
|
speaker_falarm,
|
|
speaker_error,
|
|
) = self.calc_diarization_error(pred, label_perm, encoder_out_lens)
|
|
|
|
if speech_scored > 0 and num_frames > 0:
|
|
sad_mr, sad_fr, mi, fa, cf, acc, der = (
|
|
speech_miss / speech_scored,
|
|
speech_falarm / speech_scored,
|
|
speaker_miss / speaker_scored,
|
|
speaker_falarm / speaker_scored,
|
|
speaker_error / speaker_scored,
|
|
correct / num_frames,
|
|
(speaker_miss + speaker_falarm + speaker_error) / speaker_scored,
|
|
)
|
|
else:
|
|
sad_mr, sad_fr, mi, fa, cf, acc, der = 0, 0, 0, 0, 0, 0, 0
|
|
|
|
stats = dict(
|
|
loss=loss.detach(),
|
|
loss_att=loss_att.detach() if loss_att is not None else None,
|
|
loss_pit=loss_pit.detach() if loss_pit is not None else None,
|
|
sad_mr=sad_mr,
|
|
sad_fr=sad_fr,
|
|
mi=mi,
|
|
fa=fa,
|
|
cf=cf,
|
|
acc=acc,
|
|
der=der,
|
|
)
|
|
|
|
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
|
|
return loss, stats, weight
|
|
|
|
def collect_feats(
|
|
self,
|
|
speech: torch.Tensor,
|
|
speech_lengths: torch.Tensor,
|
|
spk_labels: torch.Tensor = None,
|
|
spk_labels_lengths: torch.Tensor = None,
|
|
) -> Dict[str, torch.Tensor]:
|
|
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
|
|
return {"feats": feats, "feats_lengths": feats_lengths}
|
|
|
|
def encode_speaker(
|
|
self,
|
|
profile: torch.Tensor,
|
|
profile_lengths: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
with autocast(False):
|
|
if profile.shape[1] < self.max_spk_num:
|
|
profile = F.pad(profile, [0, 0, 0, self.max_spk_num-profile.shape[1], 0, 0], "constant", 0.0)
|
|
profile_mask = (torch.linalg.norm(profile, ord=2, dim=2, keepdim=True) > 0).float()
|
|
profile = F.normalize(profile, dim=2)
|
|
if self.speaker_encoder is not None:
|
|
profile = self.speaker_encoder(profile, profile_lengths)[0]
|
|
return profile * profile_mask, profile_lengths
|
|
else:
|
|
return profile, profile_lengths
|
|
|
|
def encode_speech(
|
|
self,
|
|
speech: torch.Tensor,
|
|
speech_lengths: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
if self.encoder is not None:
|
|
speech, speech_lengths = self.encode(speech, speech_lengths)
|
|
speech_mask = ~make_pad_mask(speech_lengths, maxlen=speech.shape[1])
|
|
speech_mask = speech_mask.to(speech.device).unsqueeze(-1).float()
|
|
return speech * speech_mask, speech_lengths
|
|
else:
|
|
return speech, speech_lengths
|
|
|
|
@staticmethod
|
|
def concate_speech_ivc(
|
|
speech: torch.Tensor,
|
|
ivc: torch.Tensor
|
|
) -> torch.Tensor:
|
|
nn, tt = ivc.shape[1], speech.shape[1]
|
|
speech = speech.unsqueeze(dim=1) # B x 1 x T x D
|
|
speech = speech.expand(-1, nn, -1, -1) # B x N x T x D
|
|
ivc = ivc.unsqueeze(dim=2) # B x N x 1 x D
|
|
ivc = ivc.expand(-1, -1, tt, -1) # B x N x T x D
|
|
sd_in = torch.cat([speech, ivc], dim=3) # B x N x T x 2D
|
|
return sd_in
|
|
|
|
def calc_similarity(
|
|
self,
|
|
speech_encoder_outputs: torch.Tensor,
|
|
speaker_encoder_outputs: torch.Tensor,
|
|
seq_len: torch.Tensor = None,
|
|
spk_len: torch.Tensor = None,
|
|
) -> torch.Tensor:
|
|
bb, tt = speech_encoder_outputs.shape[0], speech_encoder_outputs.shape[1]
|
|
d_sph, d_spk = speech_encoder_outputs.shape[2], speaker_encoder_outputs.shape[2]
|
|
if self.normalize_speech_speaker:
|
|
speech_encoder_outputs = F.normalize(speech_encoder_outputs, dim=2)
|
|
speaker_encoder_outputs = F.normalize(speaker_encoder_outputs, dim=2)
|
|
ge_in = self.concate_speech_ivc(speech_encoder_outputs, speaker_encoder_outputs)
|
|
ge_in = torch.reshape(ge_in, [bb * self.max_spk_num, tt, d_sph + d_spk])
|
|
ge_len = seq_len.unsqueeze(1).expand(-1, self.max_spk_num)
|
|
ge_len = torch.reshape(ge_len, [bb * self.max_spk_num])
|
|
cd_simi = self.cd_scorer(ge_in, ge_len)[0]
|
|
cd_simi = torch.reshape(cd_simi, [bb, self.max_spk_num, tt, 1])
|
|
cd_simi = cd_simi.squeeze(dim=3).permute([0, 2, 1])
|
|
|
|
if isinstance(self.ci_scorer, AbsEncoder):
|
|
ci_simi = self.ci_scorer(ge_in, ge_len)[0]
|
|
else:
|
|
ci_simi = self.ci_scorer(speech_encoder_outputs, speaker_encoder_outputs)
|
|
simi = torch.cat([cd_simi, ci_simi], dim=2)
|
|
|
|
return simi
|
|
|
|
def post_net_forward(self, simi, seq_len):
|
|
logits = self.decoder(simi, seq_len)[0]
|
|
|
|
return logits
|
|
|
|
def prediction_forward(
|
|
self,
|
|
speech: torch.Tensor,
|
|
speech_lengths: torch.Tensor,
|
|
profile: torch.Tensor,
|
|
profile_lengths: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
# speech encoding
|
|
speech, speech_lengths = self.encode_speech(speech, speech_lengths)
|
|
# speaker encoding
|
|
profile, profile_lengths = self.encode_speaker(profile, profile_lengths)
|
|
# calculating similarity
|
|
similarity = self.calc_similarity(speech, profile, speech_lengths, profile_lengths)
|
|
# post net forward
|
|
logits = self.post_net_forward(similarity, speech_lengths)
|
|
|
|
return logits
|
|
|
|
def encode(
|
|
self, speech: torch.Tensor, speech_lengths: torch.Tensor
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Frontend + Encoder
|
|
|
|
Args:
|
|
speech: (Batch, Length, ...)
|
|
speech_lengths: (Batch,)
|
|
"""
|
|
with autocast(False):
|
|
# 1. Extract feats
|
|
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
|
|
|
|
# 2. Data augmentation
|
|
if self.specaug is not None and self.training:
|
|
feats, feats_lengths = self.specaug(feats, feats_lengths)
|
|
|
|
# 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
|
|
if self.normalize is not None:
|
|
feats, feats_lengths = self.normalize(feats, feats_lengths)
|
|
|
|
# 4. Forward encoder
|
|
# feats: (Batch, Length, Dim)
|
|
# -> encoder_out: (Batch, Length2, Dim)
|
|
encoder_out, encoder_out_lens, _ = self.encoder(feats, feats_lengths)
|
|
|
|
assert encoder_out.size(0) == speech.size(0), (
|
|
encoder_out.size(),
|
|
speech.size(0),
|
|
)
|
|
assert encoder_out.size(1) <= encoder_out_lens.max(), (
|
|
encoder_out.size(),
|
|
encoder_out_lens.max(),
|
|
)
|
|
|
|
return encoder_out, encoder_out_lens
|
|
|
|
def _extract_feats(
|
|
self, speech: torch.Tensor, speech_lengths: torch.Tensor
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
batch_size = speech.shape[0]
|
|
speech_lengths = (
|
|
speech_lengths
|
|
if speech_lengths is not None
|
|
else torch.ones(batch_size).int() * speech.shape[1]
|
|
)
|
|
|
|
assert speech_lengths.dim() == 1, speech_lengths.shape
|
|
|
|
# for data-parallel
|
|
speech = speech[:, : speech_lengths.max()]
|
|
|
|
if self.frontend is not None:
|
|
# Frontend
|
|
# e.g. STFT and Feature extract
|
|
# data_loader may send time-domain signal in this case
|
|
# speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim)
|
|
feats, feats_lengths = self.frontend(speech, speech_lengths)
|
|
else:
|
|
# No frontend and no feature extract
|
|
feats, feats_lengths = speech, speech_lengths
|
|
return feats, feats_lengths
|
|
|
|
@staticmethod
|
|
def calc_diarization_error(pred, label, length):
|
|
# Note (jiatong): Credit to https://github.com/hitachi-speech/EEND
|
|
|
|
(batch_size, max_len, num_output) = label.size()
|
|
# mask the padding part
|
|
mask = np.zeros((batch_size, max_len, num_output))
|
|
for i in range(batch_size):
|
|
mask[i, : length[i], :] = 1
|
|
|
|
# pred and label have the shape (batch_size, max_len, num_output)
|
|
label_np = label.data.cpu().numpy().astype(int)
|
|
pred_np = (pred.data.cpu().numpy() > 0).astype(int)
|
|
label_np = label_np * mask
|
|
pred_np = pred_np * mask
|
|
length = length.data.cpu().numpy()
|
|
|
|
# compute speech activity detection error
|
|
n_ref = np.sum(label_np, axis=2)
|
|
n_sys = np.sum(pred_np, axis=2)
|
|
speech_scored = float(np.sum(n_ref > 0))
|
|
speech_miss = float(np.sum(np.logical_and(n_ref > 0, n_sys == 0)))
|
|
speech_falarm = float(np.sum(np.logical_and(n_ref == 0, n_sys > 0)))
|
|
|
|
# compute speaker diarization error
|
|
speaker_scored = float(np.sum(n_ref))
|
|
speaker_miss = float(np.sum(np.maximum(n_ref - n_sys, 0)))
|
|
speaker_falarm = float(np.sum(np.maximum(n_sys - n_ref, 0)))
|
|
n_map = np.sum(np.logical_and(label_np == 1, pred_np == 1), axis=2)
|
|
speaker_error = float(np.sum(np.minimum(n_ref, n_sys) - n_map))
|
|
correct = float(1.0 * np.sum((label_np == pred_np) * mask) / num_output)
|
|
num_frames = np.sum(length)
|
|
return (
|
|
correct,
|
|
num_frames,
|
|
speech_scored,
|
|
speech_miss,
|
|
speech_falarm,
|
|
speaker_scored,
|
|
speaker_miss,
|
|
speaker_falarm,
|
|
speaker_error,
|
|
)
|