FunASR/funasr/models/e2e_asr_paraformer.py
2023-02-09 19:37:21 +08:00

1461 lines
60 KiB
Python

import logging
from contextlib import contextmanager
from distutils.version import LooseVersion
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import torch
import random
import numpy as np
from typeguard import check_argument_types
from funasr.layers.abs_normalize import AbsNormalize
from funasr.losses.label_smoothing_loss import (
LabelSmoothingLoss, # noqa: H301
)
from funasr.models.ctc import CTC
from funasr.models.decoder.abs_decoder import AbsDecoder
from funasr.models.e2e_asr_common import ErrorCalculator
from funasr.models.encoder.abs_encoder import AbsEncoder
from funasr.models.frontend.abs_frontend import AbsFrontend
from funasr.models.postencoder.abs_postencoder import AbsPostEncoder
from funasr.models.predictor.cif import mae_loss
from funasr.models.preencoder.abs_preencoder import AbsPreEncoder
from funasr.models.specaug.abs_specaug import AbsSpecAug
from funasr.modules.add_sos_eos import add_sos_eos
from funasr.modules.nets_utils import make_pad_mask, pad_list
from funasr.modules.nets_utils import th_accuracy
from funasr.torch_utils.device_funcs import force_gatherable
from funasr.train.abs_espnet_model import AbsESPnetModel
from funasr.models.predictor.cif import CifPredictorV3
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
from torch.cuda.amp import autocast
else:
# Nothing to do if torch<1.6.0
@contextmanager
def autocast(enabled=True):
yield
class Paraformer(AbsESPnetModel):
"""
Author: Speech Lab, Alibaba Group, China
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
https://arxiv.org/abs/2206.08317
"""
def __init__(
self,
vocab_size: int,
token_list: Union[Tuple[str, ...], List[str]],
frontend: Optional[AbsFrontend],
specaug: Optional[AbsSpecAug],
normalize: Optional[AbsNormalize],
preencoder: Optional[AbsPreEncoder],
encoder: AbsEncoder,
postencoder: Optional[AbsPostEncoder],
decoder: AbsDecoder,
ctc: CTC,
ctc_weight: float = 0.5,
interctc_weight: float = 0.0,
ignore_id: int = -1,
blank_id: int = 0,
sos: int = 1,
eos: int = 2,
lsm_weight: float = 0.0,
length_normalized_loss: bool = False,
report_cer: bool = True,
report_wer: bool = True,
sym_space: str = "<space>",
sym_blank: str = "<blank>",
extract_feats_in_collect_stats: bool = True,
predictor=None,
predictor_weight: float = 0.0,
predictor_bias: int = 0,
sampling_ratio: float = 0.2,
share_embedding: bool = False,
):
assert check_argument_types()
assert 0.0 <= ctc_weight <= 1.0, ctc_weight
assert 0.0 <= interctc_weight < 1.0, interctc_weight
super().__init__()
# note that eos is the same as sos (equivalent ID)
self.blank_id = blank_id
self.sos = vocab_size - 1 if sos is None else sos
self.eos = vocab_size - 1 if eos is None else eos
self.vocab_size = vocab_size
self.ignore_id = ignore_id
self.ctc_weight = ctc_weight
self.interctc_weight = interctc_weight
self.token_list = token_list.copy()
self.frontend = frontend
self.specaug = specaug
self.normalize = normalize
self.preencoder = preencoder
self.postencoder = postencoder
self.encoder = encoder
if not hasattr(self.encoder, "interctc_use_conditioning"):
self.encoder.interctc_use_conditioning = False
if self.encoder.interctc_use_conditioning:
self.encoder.conditioning_layer = torch.nn.Linear(
vocab_size, self.encoder.output_size()
)
self.error_calculator = None
if ctc_weight == 1.0:
self.decoder = None
else:
self.decoder = decoder
self.criterion_att = LabelSmoothingLoss(
size=vocab_size,
padding_idx=ignore_id,
smoothing=lsm_weight,
normalize_length=length_normalized_loss,
)
if report_cer or report_wer:
self.error_calculator = ErrorCalculator(
token_list, sym_space, sym_blank, report_cer, report_wer
)
if ctc_weight == 0.0:
self.ctc = None
else:
self.ctc = ctc
self.extract_feats_in_collect_stats = extract_feats_in_collect_stats
self.predictor = predictor
self.predictor_weight = predictor_weight
self.predictor_bias = predictor_bias
self.sampling_ratio = sampling_ratio
self.criterion_pre = mae_loss(normalize_length=length_normalized_loss)
self.step_cur = 0
self.share_embedding = share_embedding
if self.share_embedding:
self.decoder.embed = None
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
assert text_lengths.dim() == 1, text_lengths.shape
# Check that batch_size is unified
assert (
speech.shape[0]
== speech_lengths.shape[0]
== text.shape[0]
== text_lengths.shape[0]
), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
batch_size = speech.shape[0]
self.step_cur += 1
# for data-parallel
text = text[:, : text_lengths.max()]
speech = speech[:, :speech_lengths.max()]
# 1. Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
intermediate_outs = None
if isinstance(encoder_out, tuple):
intermediate_outs = encoder_out[1]
encoder_out = encoder_out[0]
loss_att, acc_att, cer_att, wer_att = None, None, None, None
loss_ctc, cer_ctc = None, None
loss_pre = None
stats = dict()
# 1. CTC branch
if self.ctc_weight != 0.0:
loss_ctc, cer_ctc = self._calc_ctc_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# Collect CTC branch stats
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
stats["cer_ctc"] = cer_ctc
# Intermediate CTC (optional)
loss_interctc = 0.0
if self.interctc_weight != 0.0 and intermediate_outs is not None:
for layer_idx, intermediate_out in intermediate_outs:
# we assume intermediate_out has the same length & padding
# as those of encoder_out
loss_ic, cer_ic = self._calc_ctc_loss(
intermediate_out, encoder_out_lens, text, text_lengths
)
loss_interctc = loss_interctc + loss_ic
# Collect Intermedaite CTC stats
stats["loss_interctc_layer{}".format(layer_idx)] = (
loss_ic.detach() if loss_ic is not None else None
)
stats["cer_interctc_layer{}".format(layer_idx)] = cer_ic
loss_interctc = loss_interctc / len(intermediate_outs)
# calculate whole encoder loss
loss_ctc = (
1 - self.interctc_weight
) * loss_ctc + self.interctc_weight * loss_interctc
# 2b. Attention decoder branch
if self.ctc_weight != 1.0:
loss_att, acc_att, cer_att, wer_att, loss_pre = self._calc_att_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# 3. CTC-Att loss definition
if self.ctc_weight == 0.0:
loss = loss_att + loss_pre * self.predictor_weight
elif self.ctc_weight == 1.0:
loss = loss_ctc
else:
loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight
# Collect Attn branch stats
stats["loss_att"] = loss_att.detach() if loss_att is not None else None
stats["acc"] = acc_att
stats["cer"] = cer_att
stats["wer"] = wer_att
stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None
stats["loss"] = torch.clone(loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def collect_feats(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
) -> Dict[str, torch.Tensor]:
if self.extract_feats_in_collect_stats:
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
else:
# Generate dummy stats if extract_feats_in_collect_stats is False
logging.warning(
"Generating dummy stats for feats and feats_lengths, "
"because encoder_conf.extract_feats_in_collect_stats is "
f"{self.extract_feats_in_collect_stats}"
)
feats, feats_lengths = speech, speech_lengths
return {"feats": feats, "feats_lengths": feats_lengths}
def encode(
self, speech: torch.Tensor, speech_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Frontend + Encoder. Note that this method is used by asr_inference.py
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
"""
with autocast(False):
# 1. Extract feats
feats, feats_lengths = self._extract_feats(speech, speech_lengths)
# 2. Data augmentation
if self.specaug is not None and self.training:
feats, feats_lengths = self.specaug(feats, feats_lengths)
# 3. Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
if self.normalize is not None:
feats, feats_lengths = self.normalize(feats, feats_lengths)
# Pre-encoder, e.g. used for raw input data
if self.preencoder is not None:
feats, feats_lengths = self.preencoder(feats, feats_lengths)
# 4. Forward encoder
# feats: (Batch, Length, Dim)
# -> encoder_out: (Batch, Length2, Dim2)
if self.encoder.interctc_use_conditioning:
encoder_out, encoder_out_lens, _ = self.encoder(
feats, feats_lengths, ctc=self.ctc
)
else:
encoder_out, encoder_out_lens, _ = self.encoder(feats, feats_lengths)
intermediate_outs = None
if isinstance(encoder_out, tuple):
intermediate_outs = encoder_out[1]
encoder_out = encoder_out[0]
# Post-encoder, e.g. NLU
if self.postencoder is not None:
encoder_out, encoder_out_lens = self.postencoder(
encoder_out, encoder_out_lens
)
assert encoder_out.size(0) == speech.size(0), (
encoder_out.size(),
speech.size(0),
)
assert encoder_out.size(1) <= encoder_out_lens.max(), (
encoder_out.size(),
encoder_out_lens.max(),
)
if intermediate_outs is not None:
return (encoder_out, intermediate_outs), encoder_out_lens
return encoder_out, encoder_out_lens
def calc_predictor(self, encoder_out, encoder_out_lens):
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
encoder_out.device)
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = self.predictor(encoder_out, None, encoder_out_mask,
ignore_id=self.ignore_id)
return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index
def cal_decoder_with_predictor(self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens):
decoder_outs = self.decoder(
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens
)
decoder_out = decoder_outs[0]
decoder_out = torch.log_softmax(decoder_out, dim=-1)
return decoder_out, ys_pad_lens
def _extract_feats(
self, speech: torch.Tensor, speech_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
assert speech_lengths.dim() == 1, speech_lengths.shape
# for data-parallel
speech = speech[:, : speech_lengths.max()]
if self.frontend is not None:
# Frontend
# e.g. STFT and Feature extract
# data_loader may send time-domain signal in this case
# speech (Batch, NSamples) -> feats: (Batch, NFrames, Dim)
feats, feats_lengths = self.frontend(speech, speech_lengths)
else:
# No frontend and no feature extract
feats, feats_lengths = speech, speech_lengths
return feats, feats_lengths
def nll(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
) -> torch.Tensor:
"""Compute negative log likelihood(nll) from transformer-decoder
Normally, this function is called in batchify_nll.
Args:
encoder_out: (Batch, Length, Dim)
encoder_out_lens: (Batch,)
ys_pad: (Batch, Length)
ys_pad_lens: (Batch,)
"""
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_in_lens = ys_pad_lens + 1
# 1. Forward decoder
decoder_out, _ = self.decoder(
encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens
) # [batch, seqlen, dim]
batch_size = decoder_out.size(0)
decoder_num_class = decoder_out.size(2)
# nll: negative log-likelihood
nll = torch.nn.functional.cross_entropy(
decoder_out.view(-1, decoder_num_class),
ys_out_pad.view(-1),
ignore_index=self.ignore_id,
reduction="none",
)
nll = nll.view(batch_size, -1)
nll = nll.sum(dim=1)
assert nll.size(0) == batch_size
return nll
def batchify_nll(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
batch_size: int = 100,
):
"""Compute negative log likelihood(nll) from transformer-decoder
To avoid OOM, this fuction seperate the input into batches.
Then call nll for each batch and combine and return results.
Args:
encoder_out: (Batch, Length, Dim)
encoder_out_lens: (Batch,)
ys_pad: (Batch, Length)
ys_pad_lens: (Batch,)
batch_size: int, samples each batch contain when computing nll,
you may change this to avoid OOM or increase
GPU memory usage
"""
total_num = encoder_out.size(0)
if total_num <= batch_size:
nll = self.nll(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)
else:
nll = []
start_idx = 0
while True:
end_idx = min(start_idx + batch_size, total_num)
batch_encoder_out = encoder_out[start_idx:end_idx, :, :]
batch_encoder_out_lens = encoder_out_lens[start_idx:end_idx]
batch_ys_pad = ys_pad[start_idx:end_idx, :]
batch_ys_pad_lens = ys_pad_lens[start_idx:end_idx]
batch_nll = self.nll(
batch_encoder_out,
batch_encoder_out_lens,
batch_ys_pad,
batch_ys_pad_lens,
)
nll.append(batch_nll)
start_idx = end_idx
if start_idx == total_num:
break
nll = torch.cat(nll)
assert nll.size(0) == total_num
return nll
def _calc_att_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
encoder_out.device)
if self.predictor_bias == 1:
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_pad_lens = ys_pad_lens + self.predictor_bias
pre_acoustic_embeds, pre_token_length, _, pre_peak_index = self.predictor(encoder_out, ys_pad, encoder_out_mask,
ignore_id=self.ignore_id)
# 0. sampler
decoder_out_1st = None
if self.sampling_ratio > 0.0:
if self.step_cur < 2:
logging.info("enable sampler in paraformer, sampling_ratio: {}".format(self.sampling_ratio))
sematic_embeds, decoder_out_1st = self.sampler(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens,
pre_acoustic_embeds)
else:
if self.step_cur < 2:
logging.info("disable sampler in paraformer, sampling_ratio: {}".format(self.sampling_ratio))
sematic_embeds = pre_acoustic_embeds
# 1. Forward decoder
decoder_outs = self.decoder(
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens
)
decoder_out, _ = decoder_outs[0], decoder_outs[1]
if decoder_out_1st is None:
decoder_out_1st = decoder_out
# 2. Compute attention loss
loss_att = self.criterion_att(decoder_out, ys_pad)
acc_att = th_accuracy(
decoder_out_1st.view(-1, self.vocab_size),
ys_pad,
ignore_label=self.ignore_id,
)
loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length)
# Compute cer/wer using attention-decoder
if self.training or self.error_calculator is None:
cer_att, wer_att = None, None
else:
ys_hat = decoder_out_1st.argmax(dim=-1)
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
return loss_att, acc_att, cer_att, wer_att, loss_pre
def sampler(self, encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds):
tgt_mask = (~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None]).to(ys_pad.device)
ys_pad_masked = ys_pad * tgt_mask[:, :, 0]
if self.share_embedding:
ys_pad_embed = self.decoder.output_layer.weight[ys_pad_masked]
else:
ys_pad_embed = self.decoder.embed(ys_pad_masked)
with torch.no_grad():
decoder_outs = self.decoder(
encoder_out, encoder_out_lens, pre_acoustic_embeds, ys_pad_lens
)
decoder_out, _ = decoder_outs[0], decoder_outs[1]
pred_tokens = decoder_out.argmax(-1)
nonpad_positions = ys_pad.ne(self.ignore_id)
seq_lens = (nonpad_positions).sum(1)
same_num = ((pred_tokens == ys_pad) & nonpad_positions).sum(1)
input_mask = torch.ones_like(nonpad_positions)
bsz, seq_len = ys_pad.size()
for li in range(bsz):
target_num = (((seq_lens[li] - same_num[li].sum()).float()) * self.sampling_ratio).long()
if target_num > 0:
input_mask[li].scatter_(dim=0, index=torch.randperm(seq_lens[li])[:target_num].cuda(), value=0)
input_mask = input_mask.eq(1)
input_mask = input_mask.masked_fill(~nonpad_positions, False)
input_mask_expand_dim = input_mask.unsqueeze(2).to(pre_acoustic_embeds.device)
sematic_embeds = pre_acoustic_embeds.masked_fill(~input_mask_expand_dim, 0) + ys_pad_embed.masked_fill(
input_mask_expand_dim, 0)
return sematic_embeds * tgt_mask, decoder_out * tgt_mask
def _calc_ctc_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
# Calc CTC loss
loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)
# Calc CER using CTC
cer_ctc = None
if not self.training and self.error_calculator is not None:
ys_hat = self.ctc.argmax(encoder_out).data
cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True)
return loss_ctc, cer_ctc
class ParaformerBert(Paraformer):
"""
Author: Speech Lab, Alibaba Group, China
Paraformer2: advanced paraformer with LFMMI and bert for non-autoregressive end-to-end speech recognition
"""
def __init__(
self,
vocab_size: int,
token_list: Union[Tuple[str, ...], List[str]],
frontend: Optional[AbsFrontend],
specaug: Optional[AbsSpecAug],
normalize: Optional[AbsNormalize],
preencoder: Optional[AbsPreEncoder],
encoder: AbsEncoder,
postencoder: Optional[AbsPostEncoder],
decoder: AbsDecoder,
ctc: CTC,
ctc_weight: float = 0.5,
interctc_weight: float = 0.0,
ignore_id: int = -1,
blank_id: int = 0,
sos: int = 1,
eos: int = 2,
lsm_weight: float = 0.0,
length_normalized_loss: bool = False,
report_cer: bool = True,
report_wer: bool = True,
sym_space: str = "<space>",
sym_blank: str = "<blank>",
extract_feats_in_collect_stats: bool = True,
predictor=None,
predictor_weight: float = 0.0,
predictor_bias: int = 0,
sampling_ratio: float = 0.2,
embeds_id: int = 2,
embeds_loss_weight: float = 0.0,
embed_dims: int = 768,
):
assert check_argument_types()
assert 0.0 <= ctc_weight <= 1.0, ctc_weight
assert 0.0 <= interctc_weight < 1.0, interctc_weight
super().__init__(
vocab_size=vocab_size,
token_list=token_list,
frontend=frontend,
specaug=specaug,
normalize=normalize,
preencoder=preencoder,
encoder=encoder,
postencoder=postencoder,
decoder=decoder,
ctc=ctc,
ctc_weight=ctc_weight,
interctc_weight=interctc_weight,
ignore_id=ignore_id,
blank_id=blank_id,
sos=sos,
eos=eos,
lsm_weight=lsm_weight,
length_normalized_loss=length_normalized_loss,
report_cer=report_cer,
report_wer=report_wer,
sym_space=sym_space,
sym_blank=sym_blank,
extract_feats_in_collect_stats=extract_feats_in_collect_stats,
predictor=predictor,
predictor_weight=predictor_weight,
predictor_bias=predictor_bias,
sampling_ratio=sampling_ratio,
)
self.decoder.embeds_id = embeds_id
decoder_attention_dim = self.decoder.attention_dim
self.pro_nn = torch.nn.Linear(decoder_attention_dim, embed_dims)
self.cos = torch.nn.CosineSimilarity(dim=-1, eps=1e-6)
self.embeds_loss_weight = embeds_loss_weight
self.length_normalized_loss = length_normalized_loss
def _calc_embed_loss(self,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
embed: torch.Tensor = None,
embed_lengths: torch.Tensor = None,
embeds_outputs: torch.Tensor = None,
):
embeds_outputs = self.pro_nn(embeds_outputs)
tgt_mask = (~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None]).to(ys_pad.device)
embeds_outputs *= tgt_mask # b x l x d
embed *= tgt_mask # b x l x d
cos_loss = 1.0 - self.cos(embeds_outputs, embed)
cos_loss *= tgt_mask.squeeze(2)
if self.length_normalized_loss:
token_num_total = torch.sum(tgt_mask)
else:
token_num_total = tgt_mask.size()[0]
cos_loss_total = torch.sum(cos_loss)
cos_loss = cos_loss_total / token_num_total
# print("cos_loss: {}".format(cos_loss))
return cos_loss
def _calc_att_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
encoder_out.device)
if self.predictor_bias == 1:
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_pad_lens = ys_pad_lens + self.predictor_bias
pre_acoustic_embeds, pre_token_length, _, pre_peak_index = self.predictor(encoder_out, ys_pad, encoder_out_mask,
ignore_id=self.ignore_id)
# 0. sampler
decoder_out_1st = None
if self.sampling_ratio > 0.0:
if self.step_cur < 2:
logging.info(
"enable sampler in paraformer, sampling_ratio: {}".format(self.sampling_ratio))
sematic_embeds, decoder_out_1st = self.sampler(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens,
pre_acoustic_embeds)
else:
if self.step_cur < 2:
logging.info(
"disable sampler in paraformer, sampling_ratio: {}".format(self.sampling_ratio))
sematic_embeds = pre_acoustic_embeds
# 1. Forward decoder
decoder_outs = self.decoder(
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens
)
decoder_out, _ = decoder_outs[0], decoder_outs[1]
embeds_outputs = None
if len(decoder_outs) > 2:
embeds_outputs = decoder_outs[2]
if decoder_out_1st is None:
decoder_out_1st = decoder_out
# 2. Compute attention loss
loss_att = self.criterion_att(decoder_out, ys_pad)
acc_att = th_accuracy(
decoder_out_1st.view(-1, self.vocab_size),
ys_pad,
ignore_label=self.ignore_id,
)
loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length)
# Compute cer/wer using attention-decoder
if self.training or self.error_calculator is None:
cer_att, wer_att = None, None
else:
ys_hat = decoder_out_1st.argmax(dim=-1)
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
return loss_att, acc_att, cer_att, wer_att, loss_pre, embeds_outputs
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
embed: torch.Tensor = None,
embed_lengths: torch.Tensor = None,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
assert text_lengths.dim() == 1, text_lengths.shape
# Check that batch_size is unified
assert (
speech.shape[0]
== speech_lengths.shape[0]
== text.shape[0]
== text_lengths.shape[0]
), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
batch_size = speech.shape[0]
self.step_cur += 1
# for data-parallel
text = text[:, : text_lengths.max()]
speech = speech[:, :speech_lengths.max(), :]
if embed is not None:
embed = embed[:, :embed_lengths.max(), :]
# 1. Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
intermediate_outs = None
if isinstance(encoder_out, tuple):
intermediate_outs = encoder_out[1]
encoder_out = encoder_out[0]
loss_att, acc_att, cer_att, wer_att = None, None, None, None
loss_ctc, cer_ctc = None, None
loss_pre = 0.0
cos_loss = 0.0
stats = dict()
# 1. CTC branch
if self.ctc_weight != 0.0:
loss_ctc, cer_ctc = self._calc_ctc_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# Collect CTC branch stats
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
stats["cer_ctc"] = cer_ctc
# Intermediate CTC (optional)
loss_interctc = 0.0
if self.interctc_weight != 0.0 and intermediate_outs is not None:
for layer_idx, intermediate_out in intermediate_outs:
# we assume intermediate_out has the same length & padding
# as those of encoder_out
loss_ic, cer_ic = self._calc_ctc_loss(
intermediate_out, encoder_out_lens, text, text_lengths
)
loss_interctc = loss_interctc + loss_ic
# Collect Intermedaite CTC stats
stats["loss_interctc_layer{}".format(layer_idx)] = (
loss_ic.detach() if loss_ic is not None else None
)
stats["cer_interctc_layer{}".format(layer_idx)] = cer_ic
loss_interctc = loss_interctc / len(intermediate_outs)
# calculate whole encoder loss
loss_ctc = (
1 - self.interctc_weight
) * loss_ctc + self.interctc_weight * loss_interctc
# 2b. Attention decoder branch
if self.ctc_weight != 1.0:
loss_ret = self._calc_att_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
loss_att, acc_att, cer_att, wer_att, loss_pre = loss_ret[0], loss_ret[1], loss_ret[2], loss_ret[3], \
loss_ret[4]
embeds_outputs = None
if len(loss_ret) > 5:
embeds_outputs = loss_ret[5]
if embeds_outputs is not None:
cos_loss = self._calc_embed_loss(text, text_lengths, embed, embed_lengths, embeds_outputs)
# 3. CTC-Att loss definition
if self.ctc_weight == 0.0:
loss = loss_att + loss_pre * self.predictor_weight + cos_loss * self.embeds_loss_weight
elif self.ctc_weight == 1.0:
loss = loss_ctc
else:
loss = self.ctc_weight * loss_ctc + (
1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight + cos_loss * self.embeds_loss_weight
# Collect Attn branch stats
stats["loss_att"] = loss_att.detach() if loss_att is not None else None
stats["acc"] = acc_att
stats["cer"] = cer_att
stats["wer"] = wer_att
stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre > 0.0 else None
stats["cos_loss"] = cos_loss.detach().cpu() if cos_loss > 0.0 else None
stats["loss"] = torch.clone(loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
class BiCifParaformer(Paraformer):
"""
Paraformer model with an extra cif predictor
to conduct accurate timestamp prediction
"""
def __init__(
self,
vocab_size: int,
token_list: Union[Tuple[str, ...], List[str]],
frontend: Optional[AbsFrontend],
specaug: Optional[AbsSpecAug],
normalize: Optional[AbsNormalize],
preencoder: Optional[AbsPreEncoder],
encoder: AbsEncoder,
postencoder: Optional[AbsPostEncoder],
decoder: AbsDecoder,
ctc: CTC,
ctc_weight: float = 0.5,
interctc_weight: float = 0.0,
ignore_id: int = -1,
blank_id: int = 0,
sos: int = 1,
eos: int = 2,
lsm_weight: float = 0.0,
length_normalized_loss: bool = False,
report_cer: bool = True,
report_wer: bool = True,
sym_space: str = "<space>",
sym_blank: str = "<blank>",
extract_feats_in_collect_stats: bool = True,
predictor = None,
predictor_weight: float = 0.0,
predictor_bias: int = 0,
sampling_ratio: float = 0.2,
):
assert check_argument_types()
assert 0.0 <= ctc_weight <= 1.0, ctc_weight
assert 0.0 <= interctc_weight < 1.0, interctc_weight
super().__init__(
vocab_size=vocab_size,
token_list=token_list,
frontend=frontend,
specaug=specaug,
normalize=normalize,
preencoder=preencoder,
encoder=encoder,
postencoder=postencoder,
decoder=decoder,
ctc=ctc,
ctc_weight=ctc_weight,
interctc_weight=interctc_weight,
ignore_id=ignore_id,
blank_id=blank_id,
sos=sos,
eos=eos,
lsm_weight=lsm_weight,
length_normalized_loss=length_normalized_loss,
report_cer=report_cer,
report_wer=report_wer,
sym_space=sym_space,
sym_blank=sym_blank,
extract_feats_in_collect_stats=extract_feats_in_collect_stats,
predictor=predictor,
predictor_weight=predictor_weight,
predictor_bias=predictor_bias,
sampling_ratio=sampling_ratio,
)
assert isinstance(self.predictor, CifPredictorV3), "BiCifParaformer should use CIFPredictorV3"
def _calc_pre2_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
encoder_out.device)
if self.predictor_bias == 1:
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_pad_lens = ys_pad_lens + self.predictor_bias
_, _, _, _, pre_token_length2 = self.predictor(encoder_out, ys_pad, encoder_out_mask, ignore_id=self.ignore_id)
# loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length)
loss_pre2 = self.criterion_pre(ys_pad_lens.type_as(pre_token_length2), pre_token_length2)
return loss_pre2
def calc_predictor(self, encoder_out, encoder_out_lens):
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
encoder_out.device)
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index, pre_token_length2 = self.predictor(encoder_out, None, encoder_out_mask,
ignore_id=self.ignore_id)
return pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index
def calc_predictor_timestamp(self, encoder_out, encoder_out_lens, token_num):
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
encoder_out.device)
ds_alphas, ds_cif_peak, us_alphas, us_cif_peak = self.predictor.get_upsample_timestamp(encoder_out,
encoder_out_mask,
token_num)
return ds_alphas, ds_cif_peak, us_alphas, us_cif_peak
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
assert text_lengths.dim() == 1, text_lengths.shape
# Check that batch_size is unified
assert (
speech.shape[0]
== speech_lengths.shape[0]
== text.shape[0]
== text_lengths.shape[0]
), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
batch_size = speech.shape[0]
self.step_cur += 1
# for data-parallel
text = text[:, : text_lengths.max()]
speech = speech[:, :speech_lengths.max()]
# 1. Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
stats = dict()
loss_pre2 = self._calc_pre2_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
loss = loss_pre2
stats["loss_pre2"] = loss_pre2.detach().cpu()
stats["loss"] = torch.clone(loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
class ContextualParaformer(Paraformer):
"""
Paraformer model with contextual hotword
"""
def __init__(
self,
vocab_size: int,
token_list: Union[Tuple[str, ...], List[str]],
frontend: Optional[AbsFrontend],
specaug: Optional[AbsSpecAug],
normalize: Optional[AbsNormalize],
preencoder: Optional[AbsPreEncoder],
encoder: AbsEncoder,
postencoder: Optional[AbsPostEncoder],
decoder: AbsDecoder,
ctc: CTC,
ctc_weight: float = 0.5,
interctc_weight: float = 0.0,
ignore_id: int = -1,
blank_id: int = 0,
sos: int = 1,
eos: int = 2,
lsm_weight: float = 0.0,
length_normalized_loss: bool = False,
report_cer: bool = True,
report_wer: bool = True,
sym_space: str = "<space>",
sym_blank: str = "<blank>",
extract_feats_in_collect_stats: bool = True,
predictor=None,
predictor_weight: float = 0.0,
predictor_bias: int = 0,
sampling_ratio: float = 0.2,
min_hw_length: int = 2,
max_hw_length: int = 4,
sample_rate: float = 0.6,
batch_rate: float = 0.5,
double_rate: float = -1.0,
target_buffer_length: int = -1,
inner_dim: int = 256,
bias_encoder_type: str = 'lstm',
label_bracket: bool = False,
):
assert check_argument_types()
assert 0.0 <= ctc_weight <= 1.0, ctc_weight
assert 0.0 <= interctc_weight < 1.0, interctc_weight
super().__init__(
vocab_size=vocab_size,
token_list=token_list,
frontend=frontend,
specaug=specaug,
normalize=normalize,
preencoder=preencoder,
encoder=encoder,
postencoder=postencoder,
decoder=decoder,
ctc=ctc,
ctc_weight=ctc_weight,
interctc_weight=interctc_weight,
ignore_id=ignore_id,
blank_id=blank_id,
sos=sos,
eos=eos,
lsm_weight=lsm_weight,
length_normalized_loss=length_normalized_loss,
report_cer=report_cer,
report_wer=report_wer,
sym_space=sym_space,
sym_blank=sym_blank,
extract_feats_in_collect_stats=extract_feats_in_collect_stats,
predictor=predictor,
predictor_weight=predictor_weight,
predictor_bias=predictor_bias,
sampling_ratio=sampling_ratio,
)
if bias_encoder_type == 'lstm':
logging.warning("enable bias encoder sampling and contextual training")
self.bias_encoder = torch.nn.LSTM(inner_dim, inner_dim, 1, batch_first=True, dropout=0)
self.bias_embed = torch.nn.Embedding(vocab_size, inner_dim)
else:
logging.error("Unsupport bias encoder type")
self.min_hw_length = min_hw_length
self.max_hw_length = max_hw_length
self.sample_rate = sample_rate
self.batch_rate = batch_rate
self.target_buffer_length = target_buffer_length
self.double_rate = double_rate
if self.target_buffer_length > 0:
self.hotword_buffer = None
self.length_record = []
self.current_buffer_length = 0
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Frontend + Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
assert text_lengths.dim() == 1, text_lengths.shape
# Check that batch_size is unified
assert (
speech.shape[0]
== speech_lengths.shape[0]
== text.shape[0]
== text_lengths.shape[0]
), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)
batch_size = speech.shape[0]
self.step_cur += 1
# for data-parallel
text = text[:, : text_lengths.max()]
speech = speech[:, :speech_lengths.max()]
# 1. Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
intermediate_outs = None
if isinstance(encoder_out, tuple):
intermediate_outs = encoder_out[1]
encoder_out = encoder_out[0]
loss_att, acc_att, cer_att, wer_att = None, None, None, None
loss_ctc, cer_ctc = None, None
loss_pre = None
stats = dict()
# 1. CTC branch
if self.ctc_weight != 0.0:
loss_ctc, cer_ctc = self._calc_ctc_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# Collect CTC branch stats
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None
stats["cer_ctc"] = cer_ctc
# Intermediate CTC (optional)
loss_interctc = 0.0
if self.interctc_weight != 0.0 and intermediate_outs is not None:
for layer_idx, intermediate_out in intermediate_outs:
# we assume intermediate_out has the same length & padding
# as those of encoder_out
loss_ic, cer_ic = self._calc_ctc_loss(
intermediate_out, encoder_out_lens, text, text_lengths
)
loss_interctc = loss_interctc + loss_ic
# Collect Intermedaite CTC stats
stats["loss_interctc_layer{}".format(layer_idx)] = (
loss_ic.detach() if loss_ic is not None else None
)
stats["cer_interctc_layer{}".format(layer_idx)] = cer_ic
loss_interctc = loss_interctc / len(intermediate_outs)
# calculate whole encoder loss
loss_ctc = (
1 - self.interctc_weight
) * loss_ctc + self.interctc_weight * loss_interctc
# 2b. Attention decoder branch
if self.ctc_weight != 1.0:
loss_att, acc_att, cer_att, wer_att, loss_pre = self._calc_att_loss(
encoder_out, encoder_out_lens, text, text_lengths
)
# 3. CTC-Att loss definition
if self.ctc_weight == 0.0:
loss = loss_att + loss_pre * self.predictor_weight
elif self.ctc_weight == 1.0:
loss = loss_ctc
else:
loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att + loss_pre * self.predictor_weight
# Collect Attn branch stats
stats["loss_att"] = loss_att.detach() if loss_att is not None else None
stats["acc"] = acc_att
stats["cer"] = cer_att
stats["wer"] = wer_att
stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None
stats["loss"] = torch.clone(loss.detach())
# force_gatherable: to-device and to-tensor if scalar for DataParallel
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def _sample_hot_word(self, ys_pad, ys_pad_lens):
hw_list = [torch.Tensor([0]).long().to(ys_pad.device)]
hw_lengths = [0] # this length is actually for indice, so -1
for i, length in enumerate(ys_pad_lens):
if length < 2:
continue
if length > self.min_hw_length + self.max_hw_length + 2 and random.random() < self.double_rate:
# sample double hotword
_max_hw_length = min(self.max_hw_length, length // 2)
# first hotword
start1 = random.randint(0, length // 3)
end1 = random.randint(start1 + self.min_hw_length - 1, start1 + _max_hw_length - 1)
hw_tokens1 = ys_pad[i][start1:end1 + 1]
hw_lengths.append(len(hw_tokens1) - 1)
hw_list.append(hw_tokens1)
# second hotword
start2 = random.randint(end1 + 1, length - self.min_hw_length)
end2 = random.randint(min(length - 1, start2 + self.min_hw_length - 1),
min(length - 1, start2 + self.max_hw_length - 1))
hw_tokens2 = ys_pad[i][start2:end2 + 1]
hw_lengths.append(len(hw_tokens2) - 1)
hw_list.append(hw_tokens2)
continue
if random.random() < self.sample_rate:
if length == 2:
hw_tokens = ys_pad[i][:2]
hw_lengths.append(1)
hw_list.append(hw_tokens)
else:
start = random.randint(0, length - self.min_hw_length)
end = random.randint(min(length - 1, start + self.min_hw_length - 1),
min(length - 1, start + self.max_hw_length - 1)) + 1
# print(start, end)
hw_tokens = ys_pad[i][start:end]
hw_lengths.append(len(hw_tokens) - 1)
hw_list.append(hw_tokens)
# padding
hw_list_pad = pad_list(hw_list, 0)
hw_embed = self.decoder.embed(hw_list_pad)
hw_embed, (_, _) = self.bias_encoder(hw_embed)
_ind = np.arange(0, len(hw_list)).tolist()
# update self.hotword_buffer, throw a part if oversize
selected = hw_embed[_ind, hw_lengths]
if self.target_buffer_length > 0:
_b = selected.shape[0]
if self.hotword_buffer is None:
self.hotword_buffer = selected
self.length_record.append(selected.shape[0])
self.current_buffer_length = _b
elif self.current_buffer_length + _b < self.target_buffer_length:
self.hotword_buffer = torch.cat([self.hotword_buffer.detach(), selected], dim=0)
self.current_buffer_length += _b
selected = self.hotword_buffer
else:
self.hotword_buffer = torch.cat([self.hotword_buffer.detach(), selected], dim=0)
random_throw = random.randint(self.target_buffer_length // 2, self.target_buffer_length) + 10
self.hotword_buffer = self.hotword_buffer[-1 * random_throw:]
selected = self.hotword_buffer
self.current_buffer_length = selected.shape[0]
return selected.squeeze(0).repeat(ys_pad.shape[0], 1, 1).to(ys_pad.device)
def sampler(self, encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, pre_acoustic_embeds, contextual_info):
tgt_mask = (~make_pad_mask(ys_pad_lens, maxlen=ys_pad_lens.max())[:, :, None]).to(ys_pad.device)
ys_pad = ys_pad * tgt_mask[:, :, 0]
if self.share_embedding:
ys_pad_embed = self.decoder.output_layer.weight[ys_pad]
else:
ys_pad_embed = self.decoder.embed(ys_pad)
with torch.no_grad():
decoder_outs = self.decoder(
encoder_out, encoder_out_lens, pre_acoustic_embeds, ys_pad_lens, contextual_info=contextual_info
)
decoder_out, _ = decoder_outs[0], decoder_outs[1]
pred_tokens = decoder_out.argmax(-1)
nonpad_positions = ys_pad.ne(self.ignore_id)
seq_lens = (nonpad_positions).sum(1)
same_num = ((pred_tokens == ys_pad) & nonpad_positions).sum(1)
input_mask = torch.ones_like(nonpad_positions)
bsz, seq_len = ys_pad.size()
for li in range(bsz):
target_num = (((seq_lens[li] - same_num[li].sum()).float()) * self.sampling_ratio).long()
if target_num > 0:
input_mask[li].scatter_(dim=0, index=torch.randperm(seq_lens[li])[:target_num].cuda(), value=0)
input_mask = input_mask.eq(1)
input_mask = input_mask.masked_fill(~nonpad_positions, False)
input_mask_expand_dim = input_mask.unsqueeze(2).to(pre_acoustic_embeds.device)
sematic_embeds = pre_acoustic_embeds.masked_fill(~input_mask_expand_dim, 0) + ys_pad_embed.masked_fill(
input_mask_expand_dim, 0)
return sematic_embeds * tgt_mask, decoder_out * tgt_mask
def _calc_att_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
encoder_out_mask = (~make_pad_mask(encoder_out_lens, maxlen=encoder_out.size(1))[:, None, :]).to(
encoder_out.device)
if self.predictor_bias == 1:
_, ys_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id)
ys_pad_lens = ys_pad_lens + self.predictor_bias
pre_acoustic_embeds, pre_token_length, _, pre_peak_index = self.predictor(encoder_out, ys_pad,
encoder_out_mask,
ignore_id=self.ignore_id)
# sample hot word
contextual_info = self._sample_hot_word(ys_pad, ys_pad_lens)
# 0. sampler
decoder_out_1st = None
if self.sampling_ratio > 0.0:
if self.step_cur < 2:
logging.info("enable sampler in paraformer, sampling_ratio: {}".format(self.sampling_ratio))
sematic_embeds, decoder_out_1st = self.sampler(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens,
pre_acoustic_embeds, contextual_info)
else:
if self.step_cur < 2:
logging.info("disable sampler in paraformer, sampling_ratio: {}".format(self.sampling_ratio))
sematic_embeds = pre_acoustic_embeds
# 1. Forward decoder
decoder_outs = self.decoder(
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, contextual_info=contextual_info
)
decoder_out, _ = decoder_outs[0], decoder_outs[1]
if decoder_out_1st is None:
decoder_out_1st = decoder_out
# 2. Compute attention loss
loss_att = self.criterion_att(decoder_out, ys_pad)
acc_att = th_accuracy(
decoder_out_1st.view(-1, self.vocab_size),
ys_pad,
ignore_label=self.ignore_id,
)
loss_pre = self.criterion_pre(ys_pad_lens.type_as(pre_token_length), pre_token_length)
# Compute cer/wer using attention-decoder
if self.training or self.error_calculator is None:
cer_att, wer_att = None, None
else:
ys_hat = decoder_out_1st.argmax(dim=-1)
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu())
return loss_att, acc_att, cer_att, wer_att, loss_pre
def cal_decoder_with_predictor(self, encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, hw_list=None):
if hw_list is None:
# default hotword list
hw_list = [torch.Tensor([self.sos]).long().to(encoder_out.device)] # empty hotword list
hw_list_pad = pad_list(hw_list, 0)
hw_embed = self.bias_embed(hw_list_pad)
_, (h_n, _) = self.bias_encoder(hw_embed)
contextual_info = h_n.squeeze(0).repeat(encoder_out.shape[0], 1, 1)
else:
hw_lengths = [len(i) for i in hw_list]
hw_list_pad = pad_list([torch.Tensor(i).long() for i in hw_list], 0).to(encoder_out.device)
hw_embed = self.bias_embed(hw_list_pad)
hw_embed = torch.nn.utils.rnn.pack_padded_sequence(hw_embed, hw_lengths, batch_first=True,
enforce_sorted=False)
_, (h_n, _) = self.bias_encoder(hw_embed)
# hw_embed, _ = torch.nn.utils.rnn.pad_packed_sequence(hw_embed, batch_first=True)
contextual_info = h_n.squeeze(0).repeat(encoder_out.shape[0], 1, 1)
decoder_outs = self.decoder(
encoder_out, encoder_out_lens, sematic_embeds, ys_pad_lens, contextual_info=contextual_info
)
decoder_out = decoder_outs[0]
decoder_out = torch.log_softmax(decoder_out, dim=-1)
return decoder_out, ys_pad_lens
def gen_clas_tf2torch_map_dict(self):
tensor_name_prefix_torch = "bias_encoder"
tensor_name_prefix_tf = "seq2seq/clas_charrnn"
tensor_name_prefix_torch_emb = "bias_embed"
tensor_name_prefix_tf_emb = "seq2seq"
map_dict_local = {
# in lstm
"{}.weight_ih_l0".format(tensor_name_prefix_torch):
{"name": "{}/rnn/lstm_cell/kernel".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": (1, 0),
"slice": (0, 512),
"unit_k": 512,
}, # (1024, 2048),(2048,512)
"{}.weight_hh_l0".format(tensor_name_prefix_torch):
{"name": "{}/rnn/lstm_cell/kernel".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": (1, 0),
"slice": (512, 1024),
"unit_k": 512,
}, # (1024, 2048),(2048,512)
"{}.bias_ih_l0".format(tensor_name_prefix_torch):
{"name": "{}/rnn/lstm_cell/bias".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
"scale": 0.5,
"unit_b": 512,
}, # (2048,),(2048,)
"{}.bias_hh_l0".format(tensor_name_prefix_torch):
{"name": "{}/rnn/lstm_cell/bias".format(tensor_name_prefix_tf),
"squeeze": None,
"transpose": None,
"scale": 0.5,
"unit_b": 512,
}, # (2048,),(2048,)
# in embed
"{}.weight".format(tensor_name_prefix_torch_emb):
{"name": "{}/contextual_encoder/w_char_embs".format(tensor_name_prefix_tf_emb),
"squeeze": None,
"transpose": None,
}, # (4235,256),(4235,256)
}
return map_dict_local
def clas_convert_tf2torch(self,
var_dict_tf,
var_dict_torch):
map_dict = self.gen_clas_tf2torch_map_dict()
var_dict_torch_update = dict()
for name in sorted(var_dict_torch.keys(), reverse=False):
names = name.split('.')
if names[0] == "bias_encoder":
name_q = name
if name_q in map_dict.keys():
name_v = map_dict[name_q]["name"]
name_tf = name_v
data_tf = var_dict_tf[name_tf]
if map_dict[name_q].get("unit_k") is not None:
dim = map_dict[name_q]["unit_k"]
i = data_tf[:, 0:dim].copy()
f = data_tf[:, dim:2 * dim].copy()
o = data_tf[:, 2 * dim:3 * dim].copy()
g = data_tf[:, 3 * dim:4 * dim].copy()
data_tf = np.concatenate([i, o, f, g], axis=1)
if map_dict[name_q].get("unit_b") is not None:
dim = map_dict[name_q]["unit_b"]
i = data_tf[0:dim].copy()
f = data_tf[dim:2 * dim].copy()
o = data_tf[2 * dim:3 * dim].copy()
g = data_tf[3 * dim:4 * dim].copy()
data_tf = np.concatenate([i, o, f, g], axis=0)
if map_dict[name_q]["squeeze"] is not None:
data_tf = np.squeeze(data_tf, axis=map_dict[name_q]["squeeze"])
if map_dict[name_q].get("slice") is not None:
data_tf = data_tf[map_dict[name_q]["slice"][0]:map_dict[name_q]["slice"][1]]
if map_dict[name_q].get("scale") is not None:
data_tf = data_tf * map_dict[name_q]["scale"]
if map_dict[name_q]["transpose"] is not None:
data_tf = np.transpose(data_tf, map_dict[name_q]["transpose"])
data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu")
assert var_dict_torch[name].size() == data_tf.size(), "{}, {}, {} != {}".format(name, name_tf,
var_dict_torch[
name].size(),
data_tf.size())
var_dict_torch_update[name] = data_tf
logging.info(
"torch tensor: {}, {}, loading from tf tensor: {}, {}".format(name, data_tf.size(), name_v,
var_dict_tf[name_tf].shape))
elif names[0] == "bias_embed":
name_tf = map_dict[name]["name"]
data_tf = var_dict_tf[name_tf]
if map_dict[name]["squeeze"] is not None:
data_tf = np.squeeze(data_tf, axis=map_dict[name]["squeeze"])
if map_dict[name]["transpose"] is not None:
data_tf = np.transpose(data_tf, map_dict[name]["transpose"])
data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu")
assert var_dict_torch[name].size() == data_tf.size(), "{}, {}, {} != {}".format(name, name_tf,
var_dict_torch[
name].size(),
data_tf.size())
var_dict_torch_update[name] = data_tf
logging.info(
"torch tensor: {}, {}, loading from tf tensor: {}, {}".format(name, data_tf.size(), name_tf,
var_dict_tf[name_tf].shape))
return var_dict_torch_update