mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
243 lines
10 KiB
Python
243 lines
10 KiB
Python
import logging
|
|
import os
|
|
import shutil
|
|
from multiprocessing import Pool
|
|
|
|
import kaldiio
|
|
import numpy as np
|
|
import librosa
|
|
import torch.distributed as dist
|
|
import torchaudio
|
|
|
|
|
|
def filter_wav_text(data_dir, dataset):
|
|
wav_file = os.path.join(data_dir, dataset, "wav.scp")
|
|
text_file = os.path.join(data_dir, dataset, "text")
|
|
with open(wav_file) as f_wav, open(text_file) as f_text:
|
|
wav_lines = f_wav.readlines()
|
|
text_lines = f_text.readlines()
|
|
os.rename(wav_file, "{}.bak".format(wav_file))
|
|
os.rename(text_file, "{}.bak".format(text_file))
|
|
wav_dict = {}
|
|
for line in wav_lines:
|
|
parts = line.strip().split()
|
|
if len(parts) < 2:
|
|
continue
|
|
wav_dict[parts[0]] = parts[1]
|
|
text_dict = {}
|
|
for line in text_lines:
|
|
parts = line.strip().split()
|
|
if len(parts) < 2:
|
|
continue
|
|
text_dict[parts[0]] = " ".join(parts[1:])
|
|
filter_count = 0
|
|
with open(wav_file, "w") as f_wav, open(text_file, "w") as f_text:
|
|
for sample_name, wav_path in wav_dict.items():
|
|
if sample_name in text_dict.keys():
|
|
f_wav.write(sample_name + " " + wav_path + "\n")
|
|
f_text.write(sample_name + " " + text_dict[sample_name] + "\n")
|
|
else:
|
|
filter_count += 1
|
|
logging.info("{}/{} samples in {} are filtered because of the mismatch between wav.scp and text".
|
|
format(filter_count, len(wav_lines), dataset))
|
|
|
|
|
|
def wav2num_frame(wav_path, frontend_conf):
|
|
try:
|
|
waveform, sampling_rate = torchaudio.load(wav_path)
|
|
except:
|
|
waveform, sampling_rate = librosa.load(wav_path)
|
|
waveform = np.expand_dims(waveform, axis=0)
|
|
n_frames = (waveform.shape[1] * 1000.0) / (sampling_rate * frontend_conf["frame_shift"] * frontend_conf["lfr_n"])
|
|
feature_dim = frontend_conf["n_mels"] * frontend_conf["lfr_m"]
|
|
return n_frames, feature_dim
|
|
|
|
|
|
def calc_shape_core(root_path, args, idx):
|
|
file_name = args.data_file_names.split(",")[0]
|
|
data_name = args.dataset_conf.get("data_names", "speech,text").split(",")[0]
|
|
scp_file = os.path.join(root_path, "{}.{}".format(file_name, idx))
|
|
shape_file = os.path.join(root_path, "{}_shape.{}".format(data_name, idx))
|
|
with open(scp_file) as f:
|
|
lines = f.readlines()
|
|
data_type = args.dataset_conf.get("data_types", "sound,text").split(",")[0]
|
|
if data_type == "sound":
|
|
frontend_conf = args.frontend_conf
|
|
dataset_conf = args.dataset_conf
|
|
length_min = dataset_conf.speech_length_min if hasattr(dataset_conf, "{}_length_min".format(data_name)) else -1
|
|
length_max = dataset_conf.speech_length_max if hasattr(dataset_conf, "{}_length_max".format(data_name)) else -1
|
|
with open(shape_file, "w") as f:
|
|
for line in lines:
|
|
sample_name, wav_path = line.strip().split()
|
|
n_frames, feature_dim = wav2num_frame(wav_path, frontend_conf)
|
|
write_flag = True
|
|
if n_frames > 0 and length_min > 0:
|
|
write_flag = n_frames >= length_min
|
|
if n_frames > 0 and length_max > 0:
|
|
write_flag = n_frames <= length_max
|
|
if write_flag:
|
|
f.write("{} {},{}\n".format(sample_name, str(int(np.ceil(n_frames))), str(int(feature_dim))))
|
|
f.flush()
|
|
elif data_type == "kaldi_ark":
|
|
dataset_conf = args.dataset_conf
|
|
length_min = dataset_conf.speech_length_min if hasattr(dataset_conf, "{}_length_min".format(data_name)) else -1
|
|
length_max = dataset_conf.speech_length_max if hasattr(dataset_conf, "{}_length_max".format(data_name)) else -1
|
|
with open(shape_file, "w") as f:
|
|
for line in lines:
|
|
sample_name, feature_path = line.strip().split()
|
|
feature = kaldiio.load_mat(feature_path)
|
|
n_frames, feature_dim = feature.shape
|
|
write_flag = True
|
|
if n_frames > 0 and length_min > 0:
|
|
write_flag = n_frames >= length_min
|
|
if n_frames > 0 and length_max > 0:
|
|
write_flag = n_frames <= length_max
|
|
if write_flag:
|
|
f.write("{} {},{}\n".format(sample_name, str(int(np.ceil(n_frames))), str(int(feature_dim))))
|
|
f.flush()
|
|
elif data_type == "text":
|
|
with open(shape_file, "w") as f:
|
|
for line in lines:
|
|
sample_name, text = line.strip().split(maxsplit=1)
|
|
n_tokens = len(text.split())
|
|
f.write("{} {}\n".format(sample_name, str(int(np.ceil(n_tokens)))))
|
|
f.flush()
|
|
else:
|
|
raise RuntimeError("Unsupported data_type: {}".format(data_type))
|
|
|
|
|
|
def calc_shape(args, dataset, nj=64):
|
|
data_name = args.dataset_conf.get("data_names", "speech,text").split(",")[0]
|
|
shape_path = os.path.join(args.data_dir, dataset, "{}_shape".format(data_name))
|
|
if os.path.exists(shape_path):
|
|
logging.info('Shape file for small dataset already exists.')
|
|
return
|
|
|
|
split_shape_path = os.path.join(args.data_dir, dataset, "{}_shape_files".format(data_name))
|
|
if os.path.exists(split_shape_path):
|
|
shutil.rmtree(split_shape_path)
|
|
os.mkdir(split_shape_path)
|
|
|
|
# split
|
|
file_name = args.data_file_names.split(",")[0]
|
|
scp_file = os.path.join(args.data_dir, dataset, file_name)
|
|
with open(scp_file) as f:
|
|
lines = f.readlines()
|
|
num_lines = len(lines)
|
|
num_job_lines = num_lines // nj
|
|
start = 0
|
|
for i in range(nj):
|
|
end = start + num_job_lines
|
|
file = os.path.join(split_shape_path, "{}.{}".format(file_name, str(i + 1)))
|
|
with open(file, "w") as f:
|
|
if i == nj - 1:
|
|
f.writelines(lines[start:])
|
|
else:
|
|
f.writelines(lines[start:end])
|
|
start = end
|
|
|
|
p = Pool(nj)
|
|
for i in range(nj):
|
|
p.apply_async(calc_shape_core, args=(split_shape_path, args, str(i + 1)))
|
|
logging.info("Generating shape files, please wait a few minutes...")
|
|
p.close()
|
|
p.join()
|
|
|
|
# combine
|
|
with open(shape_path, "w") as f:
|
|
for i in range(nj):
|
|
job_file = os.path.join(split_shape_path, "{}_shape.{}".format(data_name, str(i + 1)))
|
|
with open(job_file) as job_f:
|
|
lines = job_f.readlines()
|
|
f.writelines(lines)
|
|
logging.info('Generating shape files done.')
|
|
|
|
|
|
def generate_data_list(args, data_dir, dataset, nj=64):
|
|
data_names = args.dataset_conf.get("data_names", "speech,text").split(",")
|
|
file_names = args.data_file_names.split(",")
|
|
concat_data_name = "_".join(data_names)
|
|
list_file = os.path.join(data_dir, dataset, "{}_data.list".format(concat_data_name))
|
|
if os.path.exists(list_file):
|
|
logging.info('Data list for large dataset already exists.')
|
|
return
|
|
split_path = os.path.join(data_dir, dataset, "split")
|
|
if os.path.exists(split_path):
|
|
shutil.rmtree(split_path)
|
|
os.mkdir(split_path)
|
|
|
|
data_lines_list = []
|
|
for file_name in file_names:
|
|
with open(os.path.join(data_dir, dataset, file_name)) as f:
|
|
lines = f.readlines()
|
|
data_lines_list.append(lines)
|
|
num_lines = len(data_lines_list[0])
|
|
num_job_lines = num_lines // nj
|
|
start = 0
|
|
for i in range(nj):
|
|
end = start + num_job_lines
|
|
split_path_nj = os.path.join(split_path, str(i + 1))
|
|
os.mkdir(split_path_nj)
|
|
for file_id, file_name in enumerate(file_names):
|
|
file = os.path.join(split_path_nj, file_name)
|
|
with open(file, "w") as f:
|
|
if i == nj - 1:
|
|
f.writelines(data_lines_list[file_id][start:])
|
|
else:
|
|
f.writelines(data_lines_list[file_id][start:end])
|
|
start = end
|
|
|
|
with open(list_file, "w") as f_data:
|
|
for i in range(nj):
|
|
path = ""
|
|
for file_name in file_names:
|
|
path = path + " " + os.path.join(split_path, str(i + 1), file_name)
|
|
f_data.write(path + "\n")
|
|
|
|
|
|
def prepare_data(args, distributed_option):
|
|
data_names = args.dataset_conf.get("data_names", "speech,text").split(",")
|
|
data_types = args.dataset_conf.get("data_types", "sound,text").split(",")
|
|
file_names = args.data_file_names.split(",")
|
|
batch_type = args.dataset_conf["batch_conf"]["batch_type"]
|
|
print("data_names: {}, data_types: {}, file_names: {}".format(data_names, data_types, file_names))
|
|
assert len(data_names) == len(data_types) == len(file_names)
|
|
if args.dataset_type == "small":
|
|
args.train_shape_file = [os.path.join(args.data_dir, args.train_set, "{}_shape".format(data_names[0]))]
|
|
args.valid_shape_file = [os.path.join(args.data_dir, args.valid_set, "{}_shape".format(data_names[0]))]
|
|
args.train_data_path_and_name_and_type, args.valid_data_path_and_name_and_type = [], []
|
|
for file_name, data_name, data_type in zip(file_names, data_names, data_types):
|
|
args.train_data_path_and_name_and_type.append(
|
|
["{}/{}/{}".format(args.data_dir, args.train_set, file_name), data_name, data_type])
|
|
args.valid_data_path_and_name_and_type.append(
|
|
["{}/{}/{}".format(args.data_dir, args.valid_set, file_name), data_name, data_type])
|
|
if os.path.exists(args.train_shape_file[0]):
|
|
assert os.path.exists(args.valid_shape_file[0])
|
|
print('shape file for small dataset already exists.')
|
|
return
|
|
else:
|
|
concat_data_name = "_".join(data_names)
|
|
args.train_data_file = os.path.join(args.data_dir, args.train_set, "{}_data.list".format(concat_data_name))
|
|
args.valid_data_file = os.path.join(args.data_dir, args.valid_set, "{}_data.list".format(concat_data_name))
|
|
if os.path.exists(args.train_data_file):
|
|
assert os.path.exists(args.valid_data_file)
|
|
print('data list for large dataset already exists.')
|
|
return
|
|
|
|
distributed = distributed_option.distributed
|
|
if not distributed or distributed_option.dist_rank == 0:
|
|
if hasattr(args, "filter_input") and args.filter_input:
|
|
filter_wav_text(args.data_dir, args.train_set)
|
|
filter_wav_text(args.data_dir, args.valid_set)
|
|
|
|
if args.dataset_type == "small" and batch_type != "unsorted":
|
|
calc_shape(args, args.train_set)
|
|
calc_shape(args, args.valid_set)
|
|
|
|
if args.dataset_type == "large":
|
|
generate_data_list(args, args.data_dir, args.train_set)
|
|
generate_data_list(args, args.data_dir, args.valid_set)
|
|
|
|
if distributed:
|
|
dist.barrier()
|