mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
265 lines
11 KiB
Bash
Executable File
265 lines
11 KiB
Bash
Executable File
#!/usr/bin/env bash
|
|
|
|
. ./path.sh || exit 1;
|
|
|
|
# machines configuration
|
|
CUDA_VISIBLE_DEVICES="0,1"
|
|
gpu_num=2
|
|
count=1
|
|
gpu_inference=true # Whether to perform gpu decoding, set false for cpu decoding
|
|
# for gpu decoding, inference_nj=ngpu*njob; for cpu decoding, inference_nj=njob
|
|
njob=1
|
|
train_cmd=utils/run.pl
|
|
infer_cmd=utils/run.pl
|
|
|
|
# general configuration
|
|
feats_dir="../DATA" #feature output dictionary, for large data
|
|
exp_dir="."
|
|
lang=zh
|
|
dumpdir=dump/fbank
|
|
feats_type=fbank
|
|
token_type=char
|
|
scp=feats.scp
|
|
type=kaldi_ark
|
|
stage=0
|
|
stop_stage=4
|
|
|
|
skip_extract_embed=false
|
|
bert_model_root="../../huggingface_models"
|
|
bert_model_name="bert-base-chinese"
|
|
|
|
# feature configuration
|
|
feats_dim=80
|
|
sample_frequency=16000
|
|
nj=32
|
|
speed_perturb="0.9,1.0,1.1"
|
|
|
|
# data
|
|
data_aishell=
|
|
|
|
# exp tag
|
|
tag=""
|
|
|
|
. utils/parse_options.sh || exit 1;
|
|
|
|
# Set bash to 'debug' mode, it will exit on :
|
|
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
|
|
set -e
|
|
set -u
|
|
set -o pipefail
|
|
|
|
train_set=train
|
|
valid_set=dev
|
|
test_sets="dev test"
|
|
|
|
asr_config=conf/train_asr_paraformerbert_conformer_12e_6d_2048_256.yaml
|
|
model_dir="baseline_$(basename "${asr_config}" .yaml)_${feats_type}_${lang}_${token_type}_${tag}"
|
|
|
|
inference_config=conf/decode_asr_transformer_noctc_1best.yaml
|
|
inference_asr_model=valid.acc.ave_10best.pth
|
|
|
|
# you can set gpu num for decoding here
|
|
gpuid_list=$CUDA_VISIBLE_DEVICES # set gpus for decoding, the same as training stage by default
|
|
ngpu=$(echo $gpuid_list | awk -F "," '{print NF}')
|
|
|
|
if ${gpu_inference}; then
|
|
inference_nj=$[${ngpu}*${njob}]
|
|
_ngpu=1
|
|
else
|
|
inference_nj=$njob
|
|
_ngpu=0
|
|
fi
|
|
|
|
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
|
|
echo "stage 0: Data preparation"
|
|
# Data preparation
|
|
local/aishell_data_prep.sh ${data_aishell}/data_aishell/wav ${data_aishell}/data_aishell/transcript ${feats_dir}
|
|
for x in train dev test; do
|
|
cp ${feats_dir}/data/${x}/text ${feats_dir}/data/${x}/text.org
|
|
paste -d " " <(cut -f 1 -d" " ${feats_dir}/data/${x}/text.org) <(cut -f 2- -d" " ${feats_dir}/data/${x}/text.org | tr -d " ") \
|
|
> ${feats_dir}/data/${x}/text
|
|
utils/text2token.py -n 1 -s 1 ${feats_dir}/data/${x}/text > ${feats_dir}/data/${x}/text.org
|
|
mv ${feats_dir}/data/${x}/text.org ${feats_dir}/data/${x}/text
|
|
done
|
|
fi
|
|
|
|
feat_train_dir=${feats_dir}/${dumpdir}/train; mkdir -p ${feat_train_dir}
|
|
feat_dev_dir=${feats_dir}/${dumpdir}/dev; mkdir -p ${feat_dev_dir}
|
|
feat_test_dir=${feats_dir}/${dumpdir}/test; mkdir -p ${feat_test_dir}
|
|
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
|
echo "stage 1: Feature Generation"
|
|
# compute fbank features
|
|
fbankdir=${feats_dir}/fbank
|
|
utils/compute_fbank.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --sample_frequency ${sample_frequency} --speed_perturb ${speed_perturb} \
|
|
${feats_dir}/data/train ${exp_dir}/exp/make_fbank/train ${fbankdir}/train
|
|
utils/fix_data_feat.sh ${fbankdir}/train
|
|
utils/compute_fbank.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --sample_frequency ${sample_frequency} \
|
|
${feats_dir}/data/dev ${exp_dir}/exp/make_fbank/dev ${fbankdir}/dev
|
|
utils/fix_data_feat.sh ${fbankdir}/dev
|
|
utils/compute_fbank.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} --sample_frequency ${sample_frequency} \
|
|
${feats_dir}/data/test ${exp_dir}/exp/make_fbank/test ${fbankdir}/test
|
|
utils/fix_data_feat.sh ${fbankdir}/test
|
|
|
|
# compute global cmvn
|
|
utils/compute_cmvn.sh --cmd "$train_cmd" --nj $nj --feats_dim ${feats_dim} \
|
|
${fbankdir}/train ${exp_dir}/exp/make_fbank/train
|
|
|
|
# apply cmvn
|
|
utils/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \
|
|
${fbankdir}/train ${fbankdir}/train/cmvn.json ${exp_dir}/exp/make_fbank/train ${feat_train_dir}
|
|
utils/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \
|
|
${fbankdir}/dev ${fbankdir}/train/cmvn.json ${exp_dir}/exp/make_fbank/dev ${feat_dev_dir}
|
|
utils/apply_cmvn.sh --cmd "$train_cmd" --nj $nj \
|
|
${fbankdir}/test ${fbankdir}/train/cmvn.json ${exp_dir}/exp/make_fbank/test ${feat_test_dir}
|
|
|
|
cp ${fbankdir}/train/text ${fbankdir}/train/speech_shape ${fbankdir}/train/text_shape ${feat_train_dir}
|
|
cp ${fbankdir}/dev/text ${fbankdir}/dev/speech_shape ${fbankdir}/dev/text_shape ${feat_dev_dir}
|
|
cp ${fbankdir}/test/text ${fbankdir}/test/speech_shape ${fbankdir}/test/text_shape ${feat_test_dir}
|
|
|
|
utils/fix_data_feat.sh ${feat_train_dir}
|
|
utils/fix_data_feat.sh ${feat_dev_dir}
|
|
utils/fix_data_feat.sh ${feat_test_dir}
|
|
|
|
#generate ark list
|
|
utils/gen_ark_list.sh --cmd "$train_cmd" --nj $nj ${feat_train_dir} ${fbankdir}/train ${feat_train_dir}
|
|
utils/gen_ark_list.sh --cmd "$train_cmd" --nj $nj ${feat_dev_dir} ${fbankdir}/dev ${feat_dev_dir}
|
|
fi
|
|
|
|
token_list=${feats_dir}/data/${lang}_token_list/char/tokens.txt
|
|
echo "dictionary: ${token_list}"
|
|
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
|
echo "stage 2: Dictionary Preparation"
|
|
mkdir -p ${feats_dir}/data/${lang}_token_list/char/
|
|
|
|
echo "make a dictionary"
|
|
echo "<blank>" > ${token_list}
|
|
echo "<s>" >> ${token_list}
|
|
echo "</s>" >> ${token_list}
|
|
utils/text2token.py -s 1 -n 1 --space "" ${feats_dir}/data/train/text | cut -f 2- -d" " | tr " " "\n" \
|
|
| sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0}' >> ${token_list}
|
|
num_token=$(cat ${token_list} | wc -l)
|
|
echo "<unk>" >> ${token_list}
|
|
vocab_size=$(cat ${token_list} | wc -l)
|
|
awk -v v=,${vocab_size} '{print $0v}' ${feat_train_dir}/text_shape > ${feat_train_dir}/text_shape.char
|
|
awk -v v=,${vocab_size} '{print $0v}' ${feat_dev_dir}/text_shape > ${feat_dev_dir}/text_shape.char
|
|
mkdir -p ${feats_dir}/asr_stats_fbank_zh_char/train
|
|
mkdir -p ${feats_dir}/asr_stats_fbank_zh_char/dev
|
|
cp ${feat_train_dir}/speech_shape ${feat_train_dir}/text_shape ${feat_train_dir}/text_shape.char ${feats_dir}/asr_stats_fbank_zh_char/train
|
|
cp ${feat_dev_dir}/speech_shape ${feat_dev_dir}/text_shape ${feat_dev_dir}/text_shape.char ${feats_dir}/asr_stats_fbank_zh_char/dev
|
|
fi
|
|
|
|
if ! "${skip_extract_embed}"; then
|
|
local/extract_embeds.sh \
|
|
--bert_model_root ${bert_model_root} \
|
|
--bert_model_name ${bert_model_name} \
|
|
--raw_dataset_path ${feats_dir}
|
|
fi
|
|
|
|
# Training Stage
|
|
world_size=$gpu_num # run on one machine
|
|
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
|
echo "stage 3: Training"
|
|
mkdir -p ${exp_dir}/exp/${model_dir}
|
|
mkdir -p ${exp_dir}/exp/${model_dir}/log
|
|
INIT_FILE=${exp_dir}/exp/${model_dir}/ddp_init
|
|
if [ -f $INIT_FILE ];then
|
|
rm -f $INIT_FILE
|
|
fi
|
|
init_method=file://$(readlink -f $INIT_FILE)
|
|
echo "$0: init method is $init_method"
|
|
for ((i = 0; i < $gpu_num; ++i)); do
|
|
{
|
|
rank=$i
|
|
local_rank=$i
|
|
gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
|
|
asr_train_paraformer.py \
|
|
--gpu_id $gpu_id \
|
|
--use_preprocessor true \
|
|
--token_type char \
|
|
--token_list $token_list \
|
|
--train_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${train_set}/${scp},speech,${type} \
|
|
--train_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${train_set}/text,text,text \
|
|
--train_data_path_and_name_and_type ${feats_dir}/embeds/${bert_model_name}/${train_set}/embeds.scp,embed,${type} \
|
|
--train_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${train_set}/speech_shape \
|
|
--train_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${train_set}/text_shape.char \
|
|
--train_shape_file ${feats_dir}/embeds/${bert_model_name}/${train_set}/embeds.shape \
|
|
--valid_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${valid_set}/${scp},speech,${type} \
|
|
--valid_data_path_and_name_and_type ${feats_dir}/${dumpdir}/${valid_set}/text,text,text \
|
|
--valid_data_path_and_name_and_type ${feats_dir}/embeds/${bert_model_name}/${valid_set}/embeds.scp,embed,${type} \
|
|
--valid_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${valid_set}/speech_shape \
|
|
--valid_shape_file ${feats_dir}/asr_stats_fbank_zh_char/${valid_set}/text_shape.char \
|
|
--valid_shape_file ${feats_dir}/embeds/${bert_model_name}/${valid_set}/embeds.shape \
|
|
--resume true \
|
|
--output_dir ${exp_dir}/exp/${model_dir} \
|
|
--config $asr_config \
|
|
--input_size $feats_dim \
|
|
--ngpu $gpu_num \
|
|
--num_worker_count $count \
|
|
--multiprocessing_distributed true \
|
|
--dist_init_method $init_method \
|
|
--dist_world_size $world_size \
|
|
--dist_rank $rank \
|
|
--allow_variable_data_keys true \
|
|
--local_rank $local_rank 1> $exp_dir/log/train.log.$i 2>&1
|
|
} &
|
|
done
|
|
wait
|
|
fi
|
|
|
|
# Testing Stage
|
|
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
|
echo "stage 4: Inference"
|
|
for dset in ${test_sets}; do
|
|
asr_exp=${exp_dir}/exp/${model_dir}
|
|
inference_tag="$(basename "${inference_config}" .yaml)"
|
|
_dir="${asr_exp}/${inference_tag}/${inference_asr_model}/${dset}"
|
|
_logdir="${_dir}/logdir"
|
|
if [ -d ${_dir} ]; then
|
|
echo "${_dir} is already exists. if you want to decode again, please delete this dir first."
|
|
exit 0
|
|
fi
|
|
mkdir -p "${_logdir}"
|
|
_data="${feats_dir}/${dumpdir}/${dset}"
|
|
key_file=${_data}/${scp}
|
|
num_scp_file="$(<${key_file} wc -l)"
|
|
_nj=$([ $inference_nj -le $num_scp_file ] && echo "$inference_nj" || echo "$num_scp_file")
|
|
split_scps=
|
|
for n in $(seq "${_nj}"); do
|
|
split_scps+=" ${_logdir}/keys.${n}.scp"
|
|
done
|
|
# shellcheck disable=SC2086
|
|
utils/split_scp.pl "${key_file}" ${split_scps}
|
|
_opts=
|
|
if [ -n "${inference_config}" ]; then
|
|
_opts+="--config ${inference_config} "
|
|
fi
|
|
${infer_cmd} --gpu "${_ngpu}" --max-jobs-run "${_nj}" JOB=1:"${_nj}" "${_logdir}"/asr_inference.JOB.log \
|
|
python -m funasr.bin.asr_inference_launch \
|
|
--batch_size 100 \
|
|
--ngpu "${_ngpu}" \
|
|
--njob ${njob} \
|
|
--gpuid_list ${gpuid_list} \
|
|
--data_path_and_name_and_type "${_data}/${scp},speech,${type}" \
|
|
--key_file "${_logdir}"/keys.JOB.scp \
|
|
--asr_train_config "${asr_exp}"/config.yaml \
|
|
--asr_model_file "${asr_exp}"/"${inference_asr_model}" \
|
|
--output_dir "${_logdir}"/output.JOB \
|
|
--mode paraformer \
|
|
${_opts}
|
|
|
|
for f in token token_int score text; do
|
|
if [ -f "${_logdir}/output.1/1best_recog/${f}" ]; then
|
|
for i in $(seq "${_nj}"); do
|
|
cat "${_logdir}/output.${i}/1best_recog/${f}"
|
|
done | sort -k1 >"${_dir}/${f}"
|
|
fi
|
|
done
|
|
python utils/proce_text.py ${_dir}/text ${_dir}/text.proc
|
|
python utils/proce_text.py ${_data}/text ${_data}/text.proc
|
|
python utils/compute_wer.py ${_data}/text.proc ${_dir}/text.proc ${_dir}/text.cer
|
|
tail -n 3 ${_dir}/text.cer > ${_dir}/text.cer.txt
|
|
cat ${_dir}/text.cer.txt
|
|
done
|
|
fi
|
|
|