FunASR/funasr/utils/download_and_prepare_model.py
2023-11-17 15:19:53 +08:00

94 lines
4.0 KiB
Python

import os
from pathlib import Path
import logging
name_maps_ms = {
"paraformer-zh": "damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
"paraformer-zh-spk": "damo/speech_paraformer-large-vad-punc-spk_asr_nat-zh-cn",
"paraformer-en": "damo/speech_paraformer-large-vad-punc_asr_nat-en-16k-common-vocab10020",
"paraformer-en-spk": "damo/speech_paraformer-large-vad-punc_asr_nat-en-16k-common-vocab10020",
"paraformer-zh-streaming": "damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online",
"fsmn-vad": "damo/speech_fsmn_vad_zh-cn-16k-common-pytorch",
"ct-punc": "damo/punc_ct-transformer_cn-en-common-vocab471067-large",
"fa-zh": "damo/speech_timestamp_prediction-v1-16k-offline",
}
def prepare_model(
model: str = None,
# mode: str = None,
vad_model: str = None,
punc_model: str = None,
model_hub: str = "ms",
cache_dir: str = None,
**kwargs,
):
if not Path(model).exists():
if model_hub == "ms" or model_hub == "modelscope":
from modelscope.utils.logger import get_logger
logger = get_logger(log_level=logging.CRITICAL)
logger.setLevel(logging.CRITICAL)
try:
from modelscope.hub.snapshot_download import snapshot_download as download_tool
model = name_maps_ms[model] if model is not None else None
vad_model = name_maps_ms[vad_model] if vad_model is not None else None
punc_model = name_maps_ms[punc_model] if punc_model is not None else None
except:
raise "You are exporting model from modelscope, please install modelscope and try it again. To install modelscope, you could:\n" \
"\npip3 install -U modelscope\n" \
"For the users in China, you could install with the command:\n" \
"\npip3 install -U modelscope -i https://mirror.sjtu.edu.cn/pypi/web/simple"
try:
model = download_tool(model, cache_dir=cache_dir, revision=kwargs.get("revision", None))
print("asr model have been downloaded to: {}".format(model))
except:
raise "model_dir must be model_name in modelscope or local path downloaded from modelscope, but is {}".format(
model)
elif model_hub == "hf" or model_hub == "huggingface":
download_tool = 0
else:
raise "model_hub must be on of ms or hf, but get {}".format(model_hub)
if vad_model is not None and not Path(vad_model).exists():
vad_model = download_tool(vad_model, cache_dir=cache_dir)
print("vad_model have been downloaded to: {}".format(vad_model))
if punc_model is not None and not Path(punc_model).exists():
punc_model = download_tool(punc_model, cache_dir=cache_dir)
print("punc_model have been downloaded to: {}".format(punc_model))
# asr
kwargs.update({"cmvn_file": None if model is None else os.path.join(model, "am.mvn"),
"asr_model_file": None if model is None else os.path.join(model, "model.pb"),
"asr_train_config": None if model is None else os.path.join(model, "config.yaml"),
})
mode = kwargs.get("mode", None)
if mode is None:
import json
json_file = os.path.join(model, 'configuration.json')
with open(json_file, 'r') as f:
config_data = json.load(f)
if config_data['task'] == "punctuation":
mode = config_data['model']['punc_model_config']['mode']
else:
mode = config_data['model']['model_config']['mode']
if vad_model is not None and "vad" not in mode:
mode = "paraformer_vad"
kwargs["mode"] = mode
# vad
kwargs.update({"vad_cmvn_file": None if vad_model is None else os.path.join(vad_model, "vad.mvn"),
"vad_model_file": None if vad_model is None else os.path.join(vad_model, "vad.pb"),
"vad_infer_config": None if vad_model is None else os.path.join(vad_model, "vad.yaml"),
})
# punc
kwargs.update({
"punc_model_file": None if punc_model is None else os.path.join(punc_model, "punc.pb"),
"punc_infer_config": None if punc_model is None else os.path.join(punc_model, "punc.yaml"),
})
return model, vad_model, punc_model, kwargs