mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
507 lines
18 KiB
Python
Executable File
507 lines
18 KiB
Python
Executable File
# !/usr/bin/env python3
|
|
# -*- encoding: utf-8 -*-
|
|
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
|
|
# MIT License (https://opensource.org/licenses/MIT)
|
|
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
import sys
|
|
from typing import List
|
|
from typing import Optional
|
|
from typing import Sequence
|
|
from typing import Tuple
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
# import librosa
|
|
import librosa
|
|
import torch
|
|
from scipy.signal import medfilt
|
|
|
|
from funasr.bin.diar_infer import Speech2DiarizationSOND, Speech2DiarizationEEND
|
|
from funasr.datasets.iterable_dataset import load_bytes
|
|
from funasr.build_utils.build_streaming_iterator import build_streaming_iterator
|
|
from funasr.torch_utils.set_all_random_seed import set_all_random_seed
|
|
from funasr.utils import config_argparse
|
|
from funasr.utils.cli_utils import get_commandline_args
|
|
from funasr.utils.types import str2bool
|
|
from funasr.utils.types import str2triple_str
|
|
from funasr.utils.types import str_or_none
|
|
|
|
|
|
def inference_sond(
|
|
diar_train_config: str,
|
|
diar_model_file: str,
|
|
output_dir: Optional[str] = None,
|
|
batch_size: int = 1,
|
|
dtype: str = "float32",
|
|
ngpu: int = 0,
|
|
seed: int = 0,
|
|
num_workers: int = 0,
|
|
log_level: Union[int, str] = "INFO",
|
|
key_file: Optional[str] = None,
|
|
model_tag: Optional[str] = None,
|
|
allow_variable_data_keys: bool = True,
|
|
streaming: bool = False,
|
|
smooth_size: int = 83,
|
|
dur_threshold: int = 10,
|
|
out_format: str = "vad",
|
|
param_dict: Optional[dict] = None,
|
|
mode: str = "sond",
|
|
**kwargs,
|
|
):
|
|
ncpu = kwargs.get("ncpu", 1)
|
|
torch.set_num_threads(ncpu)
|
|
if batch_size > 1:
|
|
raise NotImplementedError("batch decoding is not implemented")
|
|
if ngpu > 1:
|
|
raise NotImplementedError("only single GPU decoding is supported")
|
|
|
|
logging.basicConfig(
|
|
level=log_level,
|
|
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
|
)
|
|
logging.info("param_dict: {}".format(param_dict))
|
|
|
|
if ngpu >= 1 and torch.cuda.is_available():
|
|
device = "cuda"
|
|
else:
|
|
device = "cpu"
|
|
|
|
# 1. Set random-seed
|
|
set_all_random_seed(seed)
|
|
|
|
# 2a. Build speech2xvec [Optional]
|
|
if mode == "sond_demo" and param_dict is not None and "extract_profile" in param_dict and param_dict[
|
|
"extract_profile"]:
|
|
assert "sv_train_config" in param_dict, "sv_train_config must be provided param_dict."
|
|
assert "sv_model_file" in param_dict, "sv_model_file must be provided in param_dict."
|
|
sv_train_config = param_dict["sv_train_config"]
|
|
sv_model_file = param_dict["sv_model_file"]
|
|
if "model_dir" in param_dict:
|
|
sv_train_config = os.path.join(param_dict["model_dir"], sv_train_config)
|
|
sv_model_file = os.path.join(param_dict["model_dir"], sv_model_file)
|
|
from funasr.bin.sv_infer import Speech2Xvector
|
|
speech2xvector_kwargs = dict(
|
|
sv_train_config=sv_train_config,
|
|
sv_model_file=sv_model_file,
|
|
device=device,
|
|
dtype=dtype,
|
|
streaming=streaming,
|
|
embedding_node="resnet1_dense"
|
|
)
|
|
logging.info("speech2xvector_kwargs: {}".format(speech2xvector_kwargs))
|
|
speech2xvector = Speech2Xvector(**speech2xvector_kwargs)
|
|
speech2xvector.sv_model.eval()
|
|
|
|
# 2b. Build speech2diar
|
|
speech2diar_kwargs = dict(
|
|
diar_train_config=diar_train_config,
|
|
diar_model_file=diar_model_file,
|
|
device=device,
|
|
dtype=dtype,
|
|
streaming=streaming,
|
|
smooth_size=smooth_size,
|
|
dur_threshold=dur_threshold,
|
|
)
|
|
logging.info("speech2diarization_kwargs: {}".format(speech2diar_kwargs))
|
|
speech2diar = Speech2DiarizationSOND(**speech2diar_kwargs)
|
|
speech2diar.diar_model.eval()
|
|
|
|
def output_results_str(results: dict, uttid: str):
|
|
rst = []
|
|
mid = uttid.rsplit("-", 1)[0]
|
|
for key in results:
|
|
results[key] = [(x[0] / 100, x[1] / 100) for x in results[key]]
|
|
if out_format == "vad":
|
|
for spk, segs in results.items():
|
|
rst.append("{} {}".format(spk, segs))
|
|
else:
|
|
template = "SPEAKER {} 0 {:.2f} {:.2f} <NA> <NA> {} <NA> <NA>"
|
|
for spk, segs in results.items():
|
|
rst.extend([template.format(mid, st, ed, spk) for st, ed in segs])
|
|
|
|
return "\n".join(rst)
|
|
|
|
def _forward(
|
|
data_path_and_name_and_type: Sequence[Tuple[str, str, str]] = None,
|
|
raw_inputs: List[List[Union[np.ndarray, torch.Tensor, str, bytes]]] = None,
|
|
output_dir_v2: Optional[str] = None,
|
|
param_dict: Optional[dict] = None,
|
|
):
|
|
logging.info("param_dict: {}".format(param_dict))
|
|
if data_path_and_name_and_type is None and raw_inputs is not None:
|
|
if isinstance(raw_inputs, (list, tuple)):
|
|
if not isinstance(raw_inputs[0], List):
|
|
raw_inputs = [raw_inputs]
|
|
|
|
assert all([len(example) >= 2 for example in raw_inputs]), \
|
|
"The length of test case in raw_inputs must larger than 1 (>=2)."
|
|
|
|
def prepare_dataset():
|
|
for idx, example in enumerate(raw_inputs):
|
|
# read waveform file
|
|
example = [load_bytes(x) if isinstance(x, bytes) else x
|
|
for x in example]
|
|
# example = [librosa.load(x)[0] if isinstance(x, str) else x
|
|
# for x in example]
|
|
example = [librosa.load(x, dtype='float32')[0] if isinstance(x, str) else x
|
|
for x in example]
|
|
# convert torch tensor to numpy array
|
|
example = [x.numpy() if isinstance(example[0], torch.Tensor) else x
|
|
for x in example]
|
|
speech = example[0]
|
|
logging.info("Extracting profiles for {} waveforms".format(len(example) - 1))
|
|
profile = [speech2xvector.calculate_embedding(x) for x in example[1:]]
|
|
profile = torch.cat(profile, dim=0)
|
|
yield ["test{}".format(idx)], {"speech": [speech], "profile": [profile]}
|
|
|
|
loader = prepare_dataset()
|
|
else:
|
|
raise TypeError("raw_inputs must be a list or tuple in [speech, profile1, profile2, ...] ")
|
|
else:
|
|
# 3. Build data-iterator
|
|
loader = build_streaming_iterator(
|
|
task_name="diar",
|
|
preprocess_args=None,
|
|
data_path_and_name_and_type=data_path_and_name_and_type,
|
|
dtype=dtype,
|
|
batch_size=batch_size,
|
|
key_file=key_file,
|
|
num_workers=num_workers,
|
|
use_collate_fn=False,
|
|
)
|
|
|
|
# 7. Start for-loop
|
|
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
|
|
if output_path is not None:
|
|
os.makedirs(output_path, exist_ok=True)
|
|
output_writer = open("{}/result.txt".format(output_path), "w")
|
|
pse_label_writer = open("{}/labels.txt".format(output_path), "w")
|
|
logging.info("Start to diarize...")
|
|
result_list = []
|
|
for idx, (keys, batch) in enumerate(loader):
|
|
assert isinstance(batch, dict), type(batch)
|
|
assert all(isinstance(s, str) for s in keys), keys
|
|
_bs = len(next(iter(batch.values())))
|
|
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
|
batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
|
|
|
|
results, pse_labels = speech2diar(**batch)
|
|
# Only supporting batch_size==1
|
|
key, value = keys[0], output_results_str(results, keys[0])
|
|
item = {"key": key, "value": value}
|
|
result_list.append(item)
|
|
if output_path is not None:
|
|
output_writer.write(value)
|
|
output_writer.flush()
|
|
pse_label_writer.write("{} {}\n".format(key, " ".join(pse_labels)))
|
|
pse_label_writer.flush()
|
|
|
|
if idx % 100 == 0:
|
|
logging.info("Processing {:5d}: {}".format(idx, key))
|
|
|
|
if output_path is not None:
|
|
output_writer.close()
|
|
pse_label_writer.close()
|
|
|
|
return result_list
|
|
|
|
return _forward
|
|
|
|
|
|
def inference_eend(
|
|
diar_train_config: str,
|
|
diar_model_file: str,
|
|
output_dir: Optional[str] = None,
|
|
batch_size: int = 1,
|
|
dtype: str = "float32",
|
|
ngpu: int = 1,
|
|
num_workers: int = 0,
|
|
log_level: Union[int, str] = "INFO",
|
|
key_file: Optional[str] = None,
|
|
model_tag: Optional[str] = None,
|
|
allow_variable_data_keys: bool = True,
|
|
streaming: bool = False,
|
|
param_dict: Optional[dict] = None,
|
|
**kwargs,
|
|
):
|
|
ncpu = kwargs.get("ncpu", 1)
|
|
torch.set_num_threads(ncpu)
|
|
if batch_size > 1:
|
|
raise NotImplementedError("batch decoding is not implemented")
|
|
if ngpu > 1:
|
|
raise NotImplementedError("only single GPU decoding is supported")
|
|
|
|
logging.basicConfig(
|
|
level=log_level,
|
|
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
|
)
|
|
logging.info("param_dict: {}".format(param_dict))
|
|
|
|
if ngpu >= 1 and torch.cuda.is_available():
|
|
device = "cuda"
|
|
else:
|
|
device = "cpu"
|
|
|
|
# 1. Build speech2diar
|
|
speech2diar_kwargs = dict(
|
|
diar_train_config=diar_train_config,
|
|
diar_model_file=diar_model_file,
|
|
device=device,
|
|
dtype=dtype,
|
|
)
|
|
logging.info("speech2diarization_kwargs: {}".format(speech2diar_kwargs))
|
|
speech2diar = Speech2DiarizationEEND(**speech2diar_kwargs)
|
|
speech2diar.diar_model.eval()
|
|
|
|
def output_results_str(results: dict, uttid: str):
|
|
rst = []
|
|
mid = uttid.rsplit("-", 1)[0]
|
|
for key in results:
|
|
results[key] = [(x[0] / 100, x[1] / 100) for x in results[key]]
|
|
template = "SPEAKER {} 0 {:.2f} {:.2f} <NA> <NA> {} <NA> <NA>"
|
|
for spk, segs in results.items():
|
|
rst.extend([template.format(mid, st, ed, spk) for st, ed in segs])
|
|
|
|
return "\n".join(rst)
|
|
|
|
def _forward(
|
|
data_path_and_name_and_type: Sequence[Tuple[str, str, str]] = None,
|
|
raw_inputs: List[List[Union[np.ndarray, torch.Tensor, str, bytes]]] = None,
|
|
output_dir_v2: Optional[str] = None,
|
|
param_dict: Optional[dict] = None,
|
|
):
|
|
# 2. Build data-iterator
|
|
if data_path_and_name_and_type is None and raw_inputs is not None:
|
|
if isinstance(raw_inputs, torch.Tensor):
|
|
raw_inputs = raw_inputs.numpy()
|
|
data_path_and_name_and_type = [raw_inputs[0], "speech", "sound"]
|
|
loader = build_streaming_iterator(
|
|
task_name="diar",
|
|
preprocess_args=None,
|
|
data_path_and_name_and_type=data_path_and_name_and_type,
|
|
dtype=dtype,
|
|
batch_size=batch_size,
|
|
key_file=key_file,
|
|
num_workers=num_workers,
|
|
)
|
|
|
|
# 3. Start for-loop
|
|
output_path = output_dir_v2 if output_dir_v2 is not None else output_dir
|
|
if output_path is not None:
|
|
os.makedirs(output_path, exist_ok=True)
|
|
output_writer = open("{}/result.txt".format(output_path), "w")
|
|
result_list = []
|
|
for keys, batch in loader:
|
|
assert isinstance(batch, dict), type(batch)
|
|
assert all(isinstance(s, str) for s in keys), keys
|
|
_bs = len(next(iter(batch.values())))
|
|
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
|
|
# batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
|
|
|
|
results = speech2diar(**batch)
|
|
|
|
# post process
|
|
a = results[0][0].cpu().numpy()
|
|
a = medfilt(a, (11, 1))
|
|
rst = []
|
|
for spkid, frames in enumerate(a.T):
|
|
frames = np.pad(frames, (1, 1), 'constant')
|
|
changes, = np.where(np.diff(frames, axis=0) != 0)
|
|
fmt = "SPEAKER {:s} 1 {:7.2f} {:7.2f} <NA> <NA> {:s} <NA>"
|
|
for s, e in zip(changes[::2], changes[1::2]):
|
|
st = s / 10.
|
|
dur = (e - s) / 10.
|
|
rst.append(fmt.format(keys[0], st, dur, "{}_{}".format(keys[0], str(spkid))))
|
|
|
|
# Only supporting batch_size==1
|
|
value = "\n".join(rst)
|
|
item = {"key": keys[0], "value": value}
|
|
result_list.append(item)
|
|
if output_path is not None:
|
|
output_writer.write(value)
|
|
output_writer.flush()
|
|
|
|
if output_path is not None:
|
|
output_writer.close()
|
|
|
|
return result_list
|
|
|
|
return _forward
|
|
|
|
|
|
def inference_launch(mode, **kwargs):
|
|
if mode == "sond":
|
|
return inference_sond(mode=mode, **kwargs)
|
|
elif mode == "sond_demo":
|
|
param_dict = {
|
|
"extract_profile": True,
|
|
"sv_train_config": "sv.yaml",
|
|
"sv_model_file": "sv.pb",
|
|
}
|
|
if "param_dict" in kwargs and kwargs["param_dict"] is not None:
|
|
for key in param_dict:
|
|
if key not in kwargs["param_dict"]:
|
|
kwargs["param_dict"][key] = param_dict[key]
|
|
else:
|
|
kwargs["param_dict"] = param_dict
|
|
return inference_sond(mode=mode, **kwargs)
|
|
elif mode == "eend-ola":
|
|
return inference_eend(mode=mode, **kwargs)
|
|
else:
|
|
logging.info("Unknown decoding mode: {}".format(mode))
|
|
return None
|
|
|
|
|
|
def get_parser():
|
|
parser = config_argparse.ArgumentParser(
|
|
description="Speaker Verification",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
|
)
|
|
|
|
# Note(kamo): Use '_' instead of '-' as separator.
|
|
# '-' is confusing if written in yaml.
|
|
parser.add_argument(
|
|
"--log_level",
|
|
type=lambda x: x.upper(),
|
|
default="INFO",
|
|
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
|
|
help="The verbose level of logging",
|
|
)
|
|
|
|
parser.add_argument("--output_dir", type=str, required=False)
|
|
parser.add_argument(
|
|
"--ngpu",
|
|
type=int,
|
|
default=0,
|
|
help="The number of gpus. 0 indicates CPU mode",
|
|
)
|
|
parser.add_argument(
|
|
"--njob",
|
|
type=int,
|
|
default=1,
|
|
help="The number of jobs for each gpu",
|
|
)
|
|
parser.add_argument(
|
|
"--gpuid_list",
|
|
type=str,
|
|
default="",
|
|
help="The visible gpus",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=0, help="Random seed")
|
|
parser.add_argument(
|
|
"--dtype",
|
|
default="float32",
|
|
choices=["float16", "float32", "float64"],
|
|
help="Data type",
|
|
)
|
|
parser.add_argument(
|
|
"--num_workers",
|
|
type=int,
|
|
default=1,
|
|
help="The number of workers used for DataLoader",
|
|
)
|
|
|
|
group = parser.add_argument_group("Input data related")
|
|
group.add_argument(
|
|
"--data_path_and_name_and_type",
|
|
type=str2triple_str,
|
|
required=False,
|
|
action="append",
|
|
)
|
|
group.add_argument("--key_file", type=str_or_none)
|
|
group.add_argument("--allow_variable_data_keys", type=str2bool, default=True)
|
|
|
|
group = parser.add_argument_group("The model configuration related")
|
|
group.add_argument(
|
|
"--vad_infer_config",
|
|
type=str,
|
|
help="VAD infer configuration",
|
|
)
|
|
group.add_argument(
|
|
"--vad_model_file",
|
|
type=str,
|
|
help="VAD model parameter file",
|
|
)
|
|
group.add_argument(
|
|
"--diar_train_config",
|
|
type=str,
|
|
help="ASR training configuration",
|
|
)
|
|
group.add_argument(
|
|
"--diar_model_file",
|
|
type=str,
|
|
help="ASR model parameter file",
|
|
)
|
|
group.add_argument(
|
|
"--cmvn_file",
|
|
type=str,
|
|
help="Global CMVN file",
|
|
)
|
|
group.add_argument(
|
|
"--model_tag",
|
|
type=str,
|
|
help="Pretrained model tag. If specify this option, *_train_config and "
|
|
"*_file will be overwritten",
|
|
)
|
|
|
|
group = parser.add_argument_group("The inference configuration related")
|
|
group.add_argument(
|
|
"--batch_size",
|
|
type=int,
|
|
default=1,
|
|
help="The batch size for inference",
|
|
)
|
|
group.add_argument(
|
|
"--smooth_size",
|
|
type=int,
|
|
default=121,
|
|
help="The smoothing size for post-processing"
|
|
)
|
|
group.add_argument(
|
|
"--dur_threshold",
|
|
type=int,
|
|
default=10,
|
|
help="The threshold of minimum duration"
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def main(cmd=None):
|
|
print(get_commandline_args(), file=sys.stderr)
|
|
parser = get_parser()
|
|
parser.add_argument(
|
|
"--mode",
|
|
type=str,
|
|
default="sond",
|
|
help="The decoding mode",
|
|
)
|
|
args = parser.parse_args(cmd)
|
|
kwargs = vars(args)
|
|
kwargs.pop("config", None)
|
|
|
|
# set logging messages
|
|
logging.basicConfig(
|
|
level=args.log_level,
|
|
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
|
|
)
|
|
logging.info("Decoding args: {}".format(kwargs))
|
|
|
|
# gpu setting
|
|
if args.ngpu > 0:
|
|
jobid = int(args.output_dir.split(".")[-1])
|
|
gpuid = args.gpuid_list.split(",")[(jobid - 1) // args.njob]
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = gpuid
|
|
|
|
inference_pipeline = inference_launch(**kwargs)
|
|
return inference_pipeline(kwargs["data_path_and_name_and_type"])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|