FunASR/examples/industrial_data_pretraining/fsmn_kws_mt/convert.sh
zhifu gao 2196844d1d
Dev kws (#2105)
* multi tokenizer

* support fsmn_kws, fsmn_kws_mt, sanm_kws, sanm_kws_streaming training

* kws

---------

Co-authored-by: pengteng.spt <pengteng.spt@alibaba-inc.com>
2024-09-25 15:10:50 +08:00

37 lines
1003 B
Bash

workspace=`pwd`
# download model
local_path_root=${workspace}/modelscope_models
mkdir -p ${local_path_root}
local_path=${local_path_root}/speech_charctc_kws_phone-xiaoyun
if [ ! -d "$local_path" ]; then
git clone https://www.modelscope.cn/iic/speech_charctc_kws_phone-xiaoyun.git ${local_path}
fi
export PATH=${local_path}/runtime:$PATH
export LD_LIBRARY_PATH=${local_path}/runtime:$LD_LIBRARY_PATH
# finetune config file
config=./conf/fsmn_4e_l10r2_280_200_fdim40_t2602_t4.yaml
# finetune output checkpoint
torch_nnet=exp/finetune_outputs/model.pt.avg10
out_dir=exp/finetune_outputs
if [ ! -d "$out_dir" ]; then
mkdir -p $out_dir
fi
python convert.py --config $config \
--network_file $torch_nnet \
--model_dir $out_dir \
--model_name "convert.kaldi.txt" \
--model_name2 "convert.kaldi2.txt" \
--convert_to kaldi
nnet-copy --binary=true ${out_dir}/convert.kaldi.txt ${out_dir}/convert.kaldi.net
nnet-copy --binary=true ${out_dir}/convert.kaldi2.txt ${out_dir}/convert.kaldi2.net