FunASR/funasr/build_utils/build_trainer.py
jmwang66 98abc0e5ac
update setup (#686)
* update

* update setup

* update setup

* update setup

* update setup

* update setup

* update setup

* update

* update

* update setup
2023-06-29 16:30:39 +08:00

816 lines
35 KiB
Python

# Copyright ESPnet (https://github.com/espnet/espnet). All Rights Reserved.
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Trainer module."""
import argparse
import dataclasses
import logging
import os
import time
from contextlib import contextmanager
from dataclasses import is_dataclass
from distutils.version import LooseVersion
from io import BytesIO
from pathlib import Path
from typing import Dict
from typing import Iterable
from typing import List
from typing import Optional
from typing import Sequence
from typing import Tuple
from typing import Union
import humanfriendly
import oss2
import torch
import torch.nn
import torch.optim
from funasr.iterators.abs_iter_factory import AbsIterFactory
from funasr.main_funcs.average_nbest_models import average_nbest_models
from funasr.models.base_model import FunASRModel
from funasr.schedulers.abs_scheduler import AbsBatchStepScheduler
from funasr.schedulers.abs_scheduler import AbsEpochStepScheduler
from funasr.schedulers.abs_scheduler import AbsScheduler
from funasr.schedulers.abs_scheduler import AbsValEpochStepScheduler
from funasr.torch_utils.add_gradient_noise import add_gradient_noise
from funasr.torch_utils.device_funcs import to_device
from funasr.torch_utils.recursive_op import recursive_average
from funasr.torch_utils.set_all_random_seed import set_all_random_seed
from funasr.train.distributed_utils import DistributedOption
from funasr.train.reporter import Reporter
from funasr.train.reporter import SubReporter
from funasr.utils.build_dataclass import build_dataclass
if torch.distributed.is_available():
from torch.distributed import ReduceOp
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
from torch.cuda.amp import autocast
from torch.cuda.amp import GradScaler
else:
# Nothing to do if torch<1.6.0
@contextmanager
def autocast(enabled=True):
yield
GradScaler = None
try:
import fairscale
except ImportError:
fairscale = None
@dataclasses.dataclass
class TrainerOptions:
ngpu: int
resume: bool
use_amp: bool
train_dtype: str
grad_noise: bool
accum_grad: int
grad_clip: float
grad_clip_type: float
log_interval: Optional[int]
# no_forward_run: bool
use_tensorboard: bool
# use_wandb: bool
output_dir: Union[Path, str]
max_epoch: int
max_update: int
seed: int
# sharded_ddp: bool
patience: Optional[int]
keep_nbest_models: Union[int, List[int]]
nbest_averaging_interval: int
early_stopping_criterion: Sequence[str]
best_model_criterion: Sequence[Sequence[str]]
val_scheduler_criterion: Sequence[str]
unused_parameters: bool
# wandb_model_log_interval: int
use_pai: bool
oss_bucket: Union[oss2.Bucket, None]
class Trainer:
"""Trainer
"""
def __init__(self,
args,
model: FunASRModel,
optimizers: Sequence[torch.optim.Optimizer],
schedulers: Sequence[Optional[AbsScheduler]],
train_dataloader: AbsIterFactory,
valid_dataloader: AbsIterFactory,
distributed_option: DistributedOption):
self.trainer_options = self.build_options(args)
self.model = model
self.optimizers = optimizers
self.schedulers = schedulers
self.train_dataloader = train_dataloader
self.valid_dataloader = valid_dataloader
self.distributed_option = distributed_option
def build_options(self, args: argparse.Namespace) -> TrainerOptions:
"""Build options consumed by train(), eval()"""
return build_dataclass(TrainerOptions, args)
@classmethod
def add_arguments(cls, parser: argparse.ArgumentParser):
"""Reserved for future development of another Trainer"""
pass
def resume(self,
checkpoint: Union[str, Path],
model: torch.nn.Module,
reporter: Reporter,
optimizers: Sequence[torch.optim.Optimizer],
schedulers: Sequence[Optional[AbsScheduler]],
scaler: Optional[GradScaler],
ngpu: int = 0,
):
states = torch.load(
checkpoint,
map_location=f"cuda:{torch.cuda.current_device()}" if ngpu > 0 else "cpu",
)
model.load_state_dict(states["model"])
reporter.load_state_dict(states["reporter"])
for optimizer, state in zip(optimizers, states["optimizers"]):
optimizer.load_state_dict(state)
for scheduler, state in zip(schedulers, states["schedulers"]):
if scheduler is not None:
scheduler.load_state_dict(state)
if scaler is not None:
if states["scaler"] is None:
logging.warning("scaler state is not found")
else:
scaler.load_state_dict(states["scaler"])
logging.info(f"The training was resumed using {checkpoint}")
def run(self) -> None:
"""Perform training. This method performs the main process of training."""
# NOTE(kamo): Don't check the type more strictly as far trainer_options
model = self.model
optimizers = self.optimizers
schedulers = self.schedulers
train_dataloader = self.train_dataloader
valid_dataloader = self.valid_dataloader
trainer_options = self.trainer_options
distributed_option = self.distributed_option
assert is_dataclass(trainer_options), type(trainer_options)
assert len(optimizers) == len(schedulers), (len(optimizers), len(schedulers))
if isinstance(trainer_options.keep_nbest_models, int):
keep_nbest_models = [trainer_options.keep_nbest_models]
else:
if len(trainer_options.keep_nbest_models) == 0:
logging.warning("No keep_nbest_models is given. Change to [1]")
trainer_options.keep_nbest_models = [1]
keep_nbest_models = trainer_options.keep_nbest_models
output_dir = Path(trainer_options.output_dir)
reporter = Reporter()
if trainer_options.use_amp:
if LooseVersion(torch.__version__) < LooseVersion("1.6.0"):
raise RuntimeError(
"Require torch>=1.6.0 for Automatic Mixed Precision"
)
# if trainer_options.sharded_ddp:
# if fairscale is None:
# raise RuntimeError(
# "Requiring fairscale. Do 'pip install fairscale'"
# )
# scaler = fairscale.optim.grad_scaler.ShardedGradScaler()
# else:
scaler = GradScaler()
else:
scaler = None
if trainer_options.resume and (output_dir / "checkpoint.pb").exists():
self.resume(
checkpoint=output_dir / "checkpoint.pb",
model=model,
optimizers=optimizers,
schedulers=schedulers,
reporter=reporter,
scaler=scaler,
ngpu=trainer_options.ngpu,
)
start_epoch = reporter.get_epoch() + 1
if start_epoch == trainer_options.max_epoch + 1:
logging.warning(
f"The training has already reached at max_epoch: {start_epoch}"
)
if distributed_option.distributed:
dp_model = torch.nn.parallel.DistributedDataParallel(
model, find_unused_parameters=trainer_options.unused_parameters)
elif distributed_option.ngpu > 1:
dp_model = torch.nn.parallel.DataParallel(
model,
device_ids=list(range(distributed_option.ngpu)),
)
else:
# NOTE(kamo): DataParallel also should work with ngpu=1,
# but for debuggability it's better to keep this block.
dp_model = model
if trainer_options.use_tensorboard and (
not distributed_option.distributed or distributed_option.dist_rank == 0
):
from torch.utils.tensorboard import SummaryWriter
if trainer_options.use_pai:
train_summary_writer = SummaryWriter(
os.path.join(trainer_options.output_dir, "tensorboard/train")
)
valid_summary_writer = SummaryWriter(
os.path.join(trainer_options.output_dir, "tensorboard/valid")
)
else:
train_summary_writer = SummaryWriter(
str(output_dir / "tensorboard" / "train")
)
valid_summary_writer = SummaryWriter(
str(output_dir / "tensorboard" / "valid")
)
else:
train_summary_writer = None
start_time = time.perf_counter()
for iepoch in range(start_epoch, trainer_options.max_epoch + 1):
if iepoch != start_epoch:
logging.info(
"{}/{}epoch started. Estimated time to finish: {}".format(
iepoch,
trainer_options.max_epoch,
humanfriendly.format_timespan(
(time.perf_counter() - start_time)
/ (iepoch - start_epoch)
* (trainer_options.max_epoch - iepoch + 1)
),
)
)
else:
logging.info(f"{iepoch}/{trainer_options.max_epoch}epoch started")
set_all_random_seed(trainer_options.seed + iepoch)
reporter.set_epoch(iepoch)
# 1. Train and validation for one-epoch
with reporter.observe("train") as sub_reporter:
all_steps_are_invalid, max_update_stop = self.train_one_epoch(
model=dp_model,
optimizers=optimizers,
schedulers=schedulers,
iterator=train_dataloader.build_iter(iepoch),
reporter=sub_reporter,
scaler=scaler,
summary_writer=train_summary_writer,
options=trainer_options,
distributed_option=distributed_option,
)
with reporter.observe("valid") as sub_reporter:
self.validate_one_epoch(
model=dp_model,
iterator=valid_dataloader.build_iter(iepoch),
reporter=sub_reporter,
options=trainer_options,
distributed_option=distributed_option,
)
# 2. LR Scheduler step
for scheduler in schedulers:
if isinstance(scheduler, AbsValEpochStepScheduler):
scheduler.step(
reporter.get_value(*trainer_options.val_scheduler_criterion)
)
elif isinstance(scheduler, AbsEpochStepScheduler):
scheduler.step()
# if trainer_options.sharded_ddp:
# for optimizer in optimizers:
# if isinstance(optimizer, fairscale.optim.oss.OSS):
# optimizer.consolidate_state_dict()
if not distributed_option.distributed or distributed_option.dist_rank == 0:
# 3. Report the results
logging.info(reporter.log_message())
if train_summary_writer is not None:
reporter.tensorboard_add_scalar(train_summary_writer, key1="train")
reporter.tensorboard_add_scalar(valid_summary_writer, key1="valid")
# if trainer_options.use_wandb:
# reporter.wandb_log()
# save tensorboard on oss
if trainer_options.use_pai and train_summary_writer is not None:
def write_tensorboard_summary(summary_writer_path, oss_bucket):
file_list = []
for root, dirs, files in os.walk(summary_writer_path, topdown=False):
for name in files:
file_full_path = os.path.join(root, name)
file_list.append(file_full_path)
for file_full_path in file_list:
with open(file_full_path, "rb") as f:
oss_bucket.put_object(file_full_path, f)
write_tensorboard_summary(os.path.join(trainer_options.output_dir, "tensorboard/train"),
trainer_options.oss_bucket)
write_tensorboard_summary(os.path.join(trainer_options.output_dir, "tensorboard/valid"),
trainer_options.oss_bucket)
# 4. Save/Update the checkpoint
if trainer_options.use_pai:
buffer = BytesIO()
torch.save(
{
"model": model.state_dict(),
"reporter": reporter.state_dict(),
"optimizers": [o.state_dict() for o in optimizers],
"schedulers": [
s.state_dict() if s is not None else None
for s in schedulers
],
"scaler": scaler.state_dict() if scaler is not None else None,
"ema_model": model.encoder.ema.model.state_dict()
if hasattr(model.encoder, "ema") and model.encoder.ema is not None else None,
},
buffer,
)
trainer_options.oss_bucket.put_object(os.path.join(trainer_options.output_dir, "checkpoint.pb"),
buffer.getvalue())
else:
torch.save(
{
"model": model.state_dict(),
"reporter": reporter.state_dict(),
"optimizers": [o.state_dict() for o in optimizers],
"schedulers": [
s.state_dict() if s is not None else None
for s in schedulers
],
"scaler": scaler.state_dict() if scaler is not None else None,
},
output_dir / "checkpoint.pb",
)
# 5. Save and log the model and update the link to the best model
if trainer_options.use_pai:
buffer = BytesIO()
torch.save(model.state_dict(), buffer)
trainer_options.oss_bucket.put_object(os.path.join(trainer_options.output_dir,
f"{iepoch}epoch.pb"), buffer.getvalue())
else:
torch.save(model.state_dict(), output_dir / f"{iepoch}epoch.pb")
# Creates a sym link latest.pb -> {iepoch}epoch.pb
if trainer_options.use_pai:
p = os.path.join(trainer_options.output_dir, "latest.pb")
if trainer_options.oss_bucket.object_exists(p):
trainer_options.oss_bucket.delete_object(p)
trainer_options.oss_bucket.copy_object(trainer_options.oss_bucket.bucket_name,
os.path.join(trainer_options.output_dir,
f"{iepoch}epoch.pb"), p)
else:
p = output_dir / "latest.pb"
if p.is_symlink() or p.exists():
p.unlink()
p.symlink_to(f"{iepoch}epoch.pb")
_improved = []
for _phase, k, _mode in trainer_options.best_model_criterion:
# e.g. _phase, k, _mode = "train", "loss", "min"
if reporter.has(_phase, k):
best_epoch = reporter.get_best_epoch(_phase, k, _mode)
# Creates sym links if it's the best result
if best_epoch == iepoch:
if trainer_options.use_pai:
p = os.path.join(trainer_options.output_dir, f"{_phase}.{k}.best.pb")
if trainer_options.oss_bucket.object_exists(p):
trainer_options.oss_bucket.delete_object(p)
trainer_options.oss_bucket.copy_object(trainer_options.oss_bucket.bucket_name,
os.path.join(trainer_options.output_dir,
f"{iepoch}epoch.pb"), p)
else:
p = output_dir / f"{_phase}.{k}.best.pb"
if p.is_symlink() or p.exists():
p.unlink()
p.symlink_to(f"{iepoch}epoch.pb")
_improved.append(f"{_phase}.{k}")
if len(_improved) == 0:
logging.info("There are no improvements in this epoch")
else:
logging.info(
"The best model has been updated: " + ", ".join(_improved)
)
# log_model = (
# trainer_options.wandb_model_log_interval > 0
# and iepoch % trainer_options.wandb_model_log_interval == 0
# )
# if log_model and trainer_options.use_wandb:
# import wandb
#
# logging.info("Logging Model on this epoch :::::")
# artifact = wandb.Artifact(
# name=f"model_{wandb.run.id}",
# type="model",
# metadata={"improved": _improved},
# )
# artifact.add_file(str(output_dir / f"{iepoch}epoch.pb"))
# aliases = [
# f"epoch-{iepoch}",
# "best" if best_epoch == iepoch else "",
# ]
# wandb.log_artifact(artifact, aliases=aliases)
# 6. Remove the model files excluding n-best epoch and latest epoch
_removed = []
# Get the union set of the n-best among multiple criterion
nbests = set().union(
*[
set(reporter.sort_epochs(ph, k, m)[: max(keep_nbest_models)])
for ph, k, m in trainer_options.best_model_criterion
if reporter.has(ph, k)
]
)
# Generated n-best averaged model
if (
trainer_options.nbest_averaging_interval > 0
and iepoch % trainer_options.nbest_averaging_interval == 0
):
average_nbest_models(
reporter=reporter,
output_dir=output_dir,
best_model_criterion=trainer_options.best_model_criterion,
nbest=keep_nbest_models,
suffix=f"till{iepoch}epoch",
oss_bucket=trainer_options.oss_bucket,
pai_output_dir=trainer_options.output_dir,
)
for e in range(1, iepoch):
if trainer_options.use_pai:
p = os.path.join(trainer_options.output_dir, f"{e}epoch.pb")
if trainer_options.oss_bucket.object_exists(p) and e not in nbests:
trainer_options.oss_bucket.delete_object(p)
_removed.append(str(p))
else:
p = output_dir / f"{e}epoch.pb"
if p.exists() and e not in nbests:
p.unlink()
_removed.append(str(p))
if len(_removed) != 0:
logging.info("The model files were removed: " + ", ".join(_removed))
# 7. If any updating haven't happened, stops the training
if all_steps_are_invalid:
logging.warning(
f"The gradients at all steps are invalid in this epoch. "
f"Something seems wrong. This training was stopped at {iepoch}epoch"
)
break
if max_update_stop:
logging.info(
f"Stopping training due to "
f"num_updates: {trainer_options.num_updates} >= max_update: {trainer_options.max_update}"
)
break
# 8. Check early stopping
if trainer_options.patience is not None:
if reporter.check_early_stopping(
trainer_options.patience, *trainer_options.early_stopping_criterion
):
break
else:
logging.info(
f"The training was finished at {trainer_options.max_epoch} epochs "
)
# Generated n-best averaged model
if not distributed_option.distributed or distributed_option.dist_rank == 0:
average_nbest_models(
reporter=reporter,
output_dir=output_dir,
best_model_criterion=trainer_options.best_model_criterion,
nbest=keep_nbest_models,
oss_bucket=trainer_options.oss_bucket,
pai_output_dir=trainer_options.output_dir,
)
def train_one_epoch(
self,
model: torch.nn.Module,
iterator: Iterable[Tuple[List[str], Dict[str, torch.Tensor]]],
optimizers: Sequence[torch.optim.Optimizer],
schedulers: Sequence[Optional[AbsScheduler]],
scaler: Optional[GradScaler],
reporter: SubReporter,
summary_writer,
options: TrainerOptions,
distributed_option: DistributedOption,
) -> Tuple[bool, bool]:
grad_noise = options.grad_noise
accum_grad = options.accum_grad
grad_clip = options.grad_clip
grad_clip_type = options.grad_clip_type
log_interval = options.log_interval
# no_forward_run = options.no_forward_run
ngpu = options.ngpu
# use_wandb = options.use_wandb
distributed = distributed_option.distributed
if log_interval is None:
try:
log_interval = max(len(iterator) // 20, 10)
except TypeError:
log_interval = 100
model.train()
all_steps_are_invalid = True
max_update_stop = False
# [For distributed] Because iteration counts are not always equals between
# processes, send stop-flag to the other processes if iterator is finished
iterator_stop = torch.tensor(0).to("cuda" if ngpu > 0 else "cpu")
start_time = time.perf_counter()
for iiter, (_, batch) in enumerate(
reporter.measure_iter_time(iterator, "iter_time"), 1
):
assert isinstance(batch, dict), type(batch)
if distributed:
torch.distributed.all_reduce(iterator_stop, ReduceOp.SUM)
if iterator_stop > 0:
break
batch = to_device(batch, "cuda" if ngpu > 0 else "cpu")
# if no_forward_run:
# all_steps_are_invalid = False
# continue
with autocast(scaler is not None):
with reporter.measure_time("forward_time"):
retval = model(**batch)
# Note(kamo):
# Supporting two patterns for the returned value from the model
# a. dict type
if isinstance(retval, dict):
loss = retval["loss"]
stats = retval["stats"]
weight = retval["weight"]
optim_idx = retval.get("optim_idx")
if optim_idx is not None and not isinstance(optim_idx, int):
if not isinstance(optim_idx, torch.Tensor):
raise RuntimeError(
"optim_idx must be int or 1dim torch.Tensor, "
f"but got {type(optim_idx)}"
)
if optim_idx.dim() >= 2:
raise RuntimeError(
"optim_idx must be int or 1dim torch.Tensor, "
f"but got {optim_idx.dim()}dim tensor"
)
if optim_idx.dim() == 1:
for v in optim_idx:
if v != optim_idx[0]:
raise RuntimeError(
"optim_idx must be 1dim tensor "
"having same values for all entries"
)
optim_idx = optim_idx[0].item()
else:
optim_idx = optim_idx.item()
# b. tuple or list type
else:
loss, stats, weight = retval
optim_idx = None
stats = {k: v for k, v in stats.items() if v is not None}
if ngpu > 1 or distributed:
# Apply weighted averaging for loss and stats
loss = (loss * weight.type(loss.dtype)).sum()
# if distributed, this method can also apply all_reduce()
stats, weight = recursive_average(stats, weight, distributed)
# Now weight is summation over all workers
loss /= weight
if distributed:
# NOTE(kamo): Multiply world_size because DistributedDataParallel
# automatically normalizes the gradient by world_size.
loss *= torch.distributed.get_world_size()
loss /= accum_grad
reporter.register(stats, weight)
with reporter.measure_time("backward_time"):
if scaler is not None:
# Scales loss. Calls backward() on scaled loss
# to create scaled gradients.
# Backward passes under autocast are not recommended.
# Backward ops run in the same dtype autocast chose
# for corresponding forward ops.
scaler.scale(loss).backward()
else:
loss.backward()
if iiter % accum_grad == 0:
if scaler is not None:
# Unscales the gradients of optimizer's assigned params in-place
for iopt, optimizer in enumerate(optimizers):
if optim_idx is not None and iopt != optim_idx:
continue
scaler.unscale_(optimizer)
# gradient noise injection
if grad_noise:
add_gradient_noise(
model,
reporter.get_total_count(),
duration=100,
eta=1.0,
scale_factor=0.55,
)
# compute the gradient norm to check if it is normal or not
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(),
max_norm=grad_clip,
norm_type=grad_clip_type,
)
# PyTorch<=1.4, clip_grad_norm_ returns float value
if not isinstance(grad_norm, torch.Tensor):
grad_norm = torch.tensor(grad_norm)
if not torch.isfinite(grad_norm):
logging.warning(
f"The grad norm is {grad_norm}. Skipping updating the model."
)
# Must invoke scaler.update() if unscale_() is used in the iteration
# to avoid the following error:
# RuntimeError: unscale_() has already been called
# on this optimizer since the last update().
# Note that if the gradient has inf/nan values,
# scaler.step skips optimizer.step().
if scaler is not None:
for iopt, optimizer in enumerate(optimizers):
if optim_idx is not None and iopt != optim_idx:
continue
scaler.step(optimizer)
scaler.update()
else:
all_steps_are_invalid = False
with reporter.measure_time("optim_step_time"):
for iopt, (optimizer, scheduler) in enumerate(
zip(optimizers, schedulers)
):
if optim_idx is not None and iopt != optim_idx:
continue
if scaler is not None:
# scaler.step() first unscales the gradients of
# the optimizer's assigned params.
scaler.step(optimizer)
# Updates the scale for next iteration.
scaler.update()
else:
optimizer.step()
if isinstance(scheduler, AbsBatchStepScheduler):
scheduler.step()
for iopt, optimizer in enumerate(optimizers):
if optim_idx is not None and iopt != optim_idx:
continue
optimizer.zero_grad()
# Register lr and train/load time[sec/step],
# where step refers to accum_grad * mini-batch
reporter.register(
dict(
{
f"optim{i}_lr{j}": pg["lr"]
for i, optimizer in enumerate(optimizers)
for j, pg in enumerate(optimizer.param_groups)
if "lr" in pg
},
train_time=time.perf_counter() - start_time,
),
)
start_time = time.perf_counter()
# update num_updates
if distributed:
if hasattr(model.module, "num_updates"):
model.module.set_num_updates(model.module.get_num_updates() + 1)
options.num_updates = model.module.get_num_updates()
if model.module.get_num_updates() >= options.max_update:
max_update_stop = True
else:
if hasattr(model, "num_updates"):
model.set_num_updates(model.get_num_updates() + 1)
options.num_updates = model.get_num_updates()
if model.get_num_updates() >= options.max_update:
max_update_stop = True
# NOTE(kamo): Call log_message() after next()
reporter.next()
if iiter % log_interval == 0:
num_updates = options.num_updates if hasattr(options, "num_updates") else None
logging.info(reporter.log_message(-log_interval, num_updates=num_updates))
if summary_writer is not None:
reporter.tensorboard_add_scalar(summary_writer, -log_interval)
# if use_wandb:
# reporter.wandb_log()
if max_update_stop:
break
else:
if distributed:
iterator_stop.fill_(1)
torch.distributed.all_reduce(iterator_stop, ReduceOp.SUM)
return all_steps_are_invalid, max_update_stop
@torch.no_grad()
def validate_one_epoch(
self,
model: torch.nn.Module,
iterator: Iterable[Dict[str, torch.Tensor]],
reporter: SubReporter,
options: TrainerOptions,
distributed_option: DistributedOption,
) -> None:
ngpu = options.ngpu
# no_forward_run = options.no_forward_run
distributed = distributed_option.distributed
model.eval()
# [For distributed] Because iteration counts are not always equals between
# processes, send stop-flag to the other processes if iterator is finished
iterator_stop = torch.tensor(0).to("cuda" if ngpu > 0 else "cpu")
for (_, batch) in iterator:
assert isinstance(batch, dict), type(batch)
if distributed:
torch.distributed.all_reduce(iterator_stop, ReduceOp.SUM)
if iterator_stop > 0:
break
batch = to_device(batch, "cuda" if ngpu > 0 else "cpu")
# if no_forward_run:
# continue
retval = model(**batch)
if isinstance(retval, dict):
stats = retval["stats"]
weight = retval["weight"]
else:
_, stats, weight = retval
if ngpu > 1 or distributed:
# Apply weighted averaging for stats.
# if distributed, this method can also apply all_reduce()
stats, weight = recursive_average(stats, weight, distributed)
reporter.register(stats, weight)
reporter.next()
else:
if distributed:
iterator_stop.fill_(1)
torch.distributed.all_reduce(iterator_stop, ReduceOp.SUM)
def build_trainer(
args,
model: FunASRModel,
optimizers: Sequence[torch.optim.Optimizer],
schedulers: Sequence[Optional[AbsScheduler]],
train_dataloader: AbsIterFactory,
valid_dataloader: AbsIterFactory,
distributed_option: DistributedOption
):
trainer = Trainer(
args=args,
model=model,
optimizers=optimizers,
schedulers=schedulers,
train_dataloader=train_dataloader,
valid_dataloader=valid_dataloader,
distributed_option=distributed_option
)
return trainer