FunASR/funasr/build_utils/build_sv_model.py
jmwang66 98abc0e5ac
update setup (#686)
* update

* update setup

* update setup

* update setup

* update setup

* update setup

* update setup

* update

* update

* update setup
2023-06-29 16:30:39 +08:00

257 lines
7.7 KiB
Python

import logging
import torch
from funasr.layers.abs_normalize import AbsNormalize
from funasr.layers.global_mvn import GlobalMVN
from funasr.layers.utterance_mvn import UtteranceMVN
from funasr.models.base_model import FunASRModel
from funasr.models.decoder.abs_decoder import AbsDecoder
from funasr.models.decoder.sv_decoder import DenseDecoder
from funasr.models.e2e_sv import ESPnetSVModel
from funasr.models.encoder.abs_encoder import AbsEncoder
from funasr.models.encoder.resnet34_encoder import ResNet34, ResNet34_SP_L2Reg
from funasr.models.encoder.rnn_encoder import RNNEncoder
from funasr.models.frontend.abs_frontend import AbsFrontend
from funasr.models.frontend.default import DefaultFrontend
from funasr.models.frontend.fused import FusedFrontends
from funasr.models.frontend.s3prl import S3prlFrontend
from funasr.models.frontend.wav_frontend import WavFrontend
from funasr.models.frontend.windowing import SlidingWindow
from funasr.models.pooling.statistic_pooling import StatisticPooling
from funasr.models.postencoder.abs_postencoder import AbsPostEncoder
from funasr.models.postencoder.hugging_face_transformers_postencoder import (
HuggingFaceTransformersPostEncoder, # noqa: H301
)
from funasr.models.preencoder.abs_preencoder import AbsPreEncoder
from funasr.models.preencoder.linear import LinearProjection
from funasr.models.preencoder.sinc import LightweightSincConvs
from funasr.models.specaug.abs_specaug import AbsSpecAug
from funasr.models.specaug.specaug import SpecAug
from funasr.torch_utils.initialize import initialize
from funasr.train.class_choices import ClassChoices
frontend_choices = ClassChoices(
name="frontend",
classes=dict(
default=DefaultFrontend,
sliding_window=SlidingWindow,
s3prl=S3prlFrontend,
fused=FusedFrontends,
wav_frontend=WavFrontend,
),
type_check=AbsFrontend,
default="default",
)
specaug_choices = ClassChoices(
name="specaug",
classes=dict(
specaug=SpecAug,
),
type_check=AbsSpecAug,
default=None,
optional=True,
)
normalize_choices = ClassChoices(
"normalize",
classes=dict(
global_mvn=GlobalMVN,
utterance_mvn=UtteranceMVN,
),
type_check=AbsNormalize,
default=None,
optional=True,
)
model_choices = ClassChoices(
"model",
classes=dict(
espnet=ESPnetSVModel,
),
type_check=FunASRModel,
default="espnet",
)
preencoder_choices = ClassChoices(
name="preencoder",
classes=dict(
sinc=LightweightSincConvs,
linear=LinearProjection,
),
type_check=AbsPreEncoder,
default=None,
optional=True,
)
encoder_choices = ClassChoices(
"encoder",
classes=dict(
resnet34=ResNet34,
resnet34_sp_l2reg=ResNet34_SP_L2Reg,
rnn=RNNEncoder,
),
type_check=AbsEncoder,
default="resnet34",
)
postencoder_choices = ClassChoices(
name="postencoder",
classes=dict(
hugging_face_transformers=HuggingFaceTransformersPostEncoder,
),
type_check=AbsPostEncoder,
default=None,
optional=True,
)
pooling_choices = ClassChoices(
name="pooling_type",
classes=dict(
statistic=StatisticPooling,
),
type_check=torch.nn.Module,
default="statistic",
)
decoder_choices = ClassChoices(
"decoder",
classes=dict(
dense=DenseDecoder,
),
type_check=AbsDecoder,
default="dense",
)
class_choices_list = [
# --frontend and --frontend_conf
frontend_choices,
# --specaug and --specaug_conf
specaug_choices,
# --normalize and --normalize_conf
normalize_choices,
# --model and --model_conf
model_choices,
# --preencoder and --preencoder_conf
preencoder_choices,
# --encoder and --encoder_conf
encoder_choices,
# --postencoder and --postencoder_conf
postencoder_choices,
# --pooling and --pooling_conf
pooling_choices,
# --decoder and --decoder_conf
decoder_choices,
]
def build_sv_model(args):
# token_list
if isinstance(args.token_list, str):
with open(args.token_list, encoding="utf-8") as f:
token_list = [line.rstrip() for line in f]
# Overwriting token_list to keep it as "portable".
args.token_list = list(token_list)
elif isinstance(args.token_list, (tuple, list)):
token_list = list(args.token_list)
else:
raise RuntimeError("token_list must be str or list")
vocab_size = len(token_list)
logging.info(f"Speaker number: {vocab_size}")
# 1. frontend
if args.input_size is None:
# Extract features in the model
frontend_class = frontend_choices.get_class(args.frontend)
frontend = frontend_class(**args.frontend_conf)
input_size = frontend.output_size()
else:
# Give features from data-loader
args.frontend = None
args.frontend_conf = {}
frontend = None
input_size = args.input_size
# 2. Data augmentation for spectrogram
if args.specaug is not None:
specaug_class = specaug_choices.get_class(args.specaug)
specaug = specaug_class(**args.specaug_conf)
else:
specaug = None
# 3. Normalization layer
if args.normalize is not None:
normalize_class = normalize_choices.get_class(args.normalize)
normalize = normalize_class(**args.normalize_conf)
else:
normalize = None
# 4. Pre-encoder input block
# NOTE(kan-bayashi): Use getattr to keep the compatibility
if getattr(args, "preencoder", None) is not None:
preencoder_class = preencoder_choices.get_class(args.preencoder)
preencoder = preencoder_class(**args.preencoder_conf)
input_size = preencoder.output_size()
else:
preencoder = None
# 5. Encoder
encoder_class = encoder_choices.get_class(args.encoder)
encoder = encoder_class(input_size=input_size, **args.encoder_conf)
# 6. Post-encoder block
# NOTE(kan-bayashi): Use getattr to keep the compatibility
encoder_output_size = encoder.output_size()
if getattr(args, "postencoder", None) is not None:
postencoder_class = postencoder_choices.get_class(args.postencoder)
postencoder = postencoder_class(
input_size=encoder_output_size, **args.postencoder_conf
)
encoder_output_size = postencoder.output_size()
else:
postencoder = None
# 7. Pooling layer
pooling_class = pooling_choices.get_class(args.pooling_type)
pooling_dim = (2, 3)
eps = 1e-12
if hasattr(args, "pooling_type_conf"):
if "pooling_dim" in args.pooling_type_conf:
pooling_dim = args.pooling_type_conf["pooling_dim"]
if "eps" in args.pooling_type_conf:
eps = args.pooling_type_conf["eps"]
pooling_layer = pooling_class(
pooling_dim=pooling_dim,
eps=eps,
)
if args.pooling_type == "statistic":
encoder_output_size *= 2
# 8. Decoder
decoder_class = decoder_choices.get_class(args.decoder)
decoder = decoder_class(
vocab_size=vocab_size,
encoder_output_size=encoder_output_size,
**args.decoder_conf,
)
# 7. Build model
try:
model_class = model_choices.get_class(args.model)
except AttributeError:
model_class = model_choices.get_class("espnet")
model = model_class(
vocab_size=vocab_size,
token_list=token_list,
frontend=frontend,
specaug=specaug,
normalize=normalize,
preencoder=preencoder,
encoder=encoder,
postencoder=postencoder,
pooling_layer=pooling_layer,
decoder=decoder,
**args.model_conf,
)
# FIXME(kamo): Should be done in model?
# 8. Initialize
if args.init is not None:
initialize(model, args.init)
return model