FunASR/funasr/models/paraformer/export_meta.py
Shi Xian e04489ce4c
contextual&seaco ONNX export (#1481)
* contextual&seaco ONNX export

* update ContextualEmbedderExport2

* update ContextualEmbedderExport2

* update code

* onnx (#1482)

* qwenaudio qwenaudiochat

* qwenaudio qwenaudiochat

* whisper

* whisper

* llm

* llm

* llm

* llm

* llm

* llm

* llm

* llm

* export onnx

* export onnx

* export onnx

* dingding

* dingding

* llm

* doc

* onnx

* onnx

* onnx

* onnx

* onnx

* onnx

* v1.0.15

* qwenaudio

* qwenaudio

* issue doc

* update

* update

* bugfix

* onnx

* update export calling

* update codes

* remove useless code

* update code

---------

Co-authored-by: zhifu gao <zhifu.gzf@alibaba-inc.com>
2024-03-13 16:34:42 +08:00

85 lines
2.8 KiB
Python

#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import types
import torch
from funasr.register import tables
def export_rebuild_model(model, **kwargs):
model.device = kwargs.get("device")
is_onnx = kwargs.get("type", "onnx") == "onnx"
encoder_class = tables.encoder_classes.get(kwargs["encoder"]+"Export")
model.encoder = encoder_class(model.encoder, onnx=is_onnx)
predictor_class = tables.predictor_classes.get(kwargs["predictor"]+"Export")
model.predictor = predictor_class(model.predictor, onnx=is_onnx)
decoder_class = tables.decoder_classes.get(kwargs["decoder"]+"Export")
model.decoder = decoder_class(model.decoder, onnx=is_onnx)
from funasr.utils.torch_function import sequence_mask
model.make_pad_mask = sequence_mask(kwargs['max_seq_len'], flip=False)
model.forward = types.MethodType(export_forward, model)
model.export_dummy_inputs = types.MethodType(export_dummy_inputs, model)
model.export_input_names = types.MethodType(export_input_names, model)
model.export_output_names = types.MethodType(export_output_names, model)
model.export_dynamic_axes = types.MethodType(export_dynamic_axes, model)
model.export_name = types.MethodType(export_name, model)
return model
def export_forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
):
# a. To device
batch = {"speech": speech, "speech_lengths": speech_lengths}
# batch = to_device(batch, device=self.device)
enc, enc_len = self.encoder(**batch)
mask = self.make_pad_mask(enc_len)[:, None, :]
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = self.predictor(enc, mask)
pre_token_length = pre_token_length.floor().type(torch.int32)
decoder_out, _ = self.decoder(enc, enc_len, pre_acoustic_embeds, pre_token_length)
decoder_out = torch.log_softmax(decoder_out, dim=-1)
# sample_ids = decoder_out.argmax(dim=-1)
return decoder_out, pre_token_length
def export_dummy_inputs(self):
speech = torch.randn(2, 30, 560)
speech_lengths = torch.tensor([6, 30], dtype=torch.int32)
return (speech, speech_lengths)
def export_input_names(self):
return ['speech', 'speech_lengths']
def export_output_names(self):
return ['logits', 'token_num']
def export_dynamic_axes(self):
return {
'speech': {
0: 'batch_size',
1: 'feats_length'
},
'speech_lengths': {
0: 'batch_size',
},
'logits': {
0: 'batch_size',
1: 'logits_length'
},
}
def export_name(self, ):
return "model.onnx"