mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
138 lines
5.4 KiB
Python
138 lines
5.4 KiB
Python
import torch
|
|
import copy
|
|
import logging
|
|
import numpy as np
|
|
from typing import Any, List, Tuple, Union
|
|
|
|
def cut_interval(alphas: torch.Tensor, start: int, end: int, tail: bool):
|
|
if not tail:
|
|
if end == start + 1:
|
|
cut = (end + start) / 2.0
|
|
else:
|
|
alpha = alphas[start+1: end].tolist()
|
|
reverse_steps = 1
|
|
for reverse_alpha in alpha[::-1]:
|
|
if reverse_alpha > 0.35:
|
|
reverse_steps += 1
|
|
else:
|
|
break
|
|
cut = end - reverse_steps
|
|
else:
|
|
if end != len(alphas) - 1:
|
|
cut = end + 1
|
|
else:
|
|
cut = start + 1
|
|
return float(cut)
|
|
|
|
def time_stamp_lfr6(alphas: torch.Tensor, speech_lengths: torch.Tensor, raw_text: List[str], begin: int = 0, end: int = None):
|
|
time_stamp_list = []
|
|
alphas = alphas[0]
|
|
text = copy.deepcopy(raw_text)
|
|
if end is None:
|
|
time = speech_lengths * 60 / 1000
|
|
sacle_rate = (time / speech_lengths[0]).tolist()
|
|
else:
|
|
time = (end - begin) / 1000
|
|
sacle_rate = (time / speech_lengths[0]).tolist()
|
|
|
|
predictor = (alphas > 0.5).int()
|
|
fire_places = torch.nonzero(predictor == 1).squeeze(1).tolist()
|
|
|
|
cuts = []
|
|
npeak = int(predictor.sum())
|
|
nchar = len(raw_text)
|
|
if npeak - 1 == nchar:
|
|
fire_places = torch.where((alphas > 0.5) == 1)[0].tolist()
|
|
for i in range(len(fire_places)):
|
|
if fire_places[i] < len(alphas) - 1:
|
|
if 0.05 < alphas[fire_places[i]+1] < 0.5:
|
|
fire_places[i] += 1
|
|
elif npeak < nchar:
|
|
lost_num = nchar - npeak
|
|
lost_fire = speech_lengths[0].tolist() - fire_places[-1]
|
|
interval_distance = lost_fire // (lost_num + 1)
|
|
for i in range(1, lost_num + 1):
|
|
fire_places.append(fire_places[-1] + interval_distance)
|
|
elif npeak - 1 > nchar:
|
|
redundance_num = npeak - 1 - nchar
|
|
for i in range(redundance_num):
|
|
fire_places.pop()
|
|
|
|
cuts.append(0)
|
|
start_sil = True
|
|
if start_sil:
|
|
text.insert(0, '<sil>')
|
|
|
|
for i in range(len(fire_places)-1):
|
|
cuts.append(cut_interval(alphas, fire_places[i], fire_places[i+1], tail=(i==len(fire_places)-2)))
|
|
|
|
for i in range(2, len(fire_places)-2):
|
|
if fire_places[i-2] == fire_places[i-1] - 1 and fire_places[i-1] != fire_places[i] - 1:
|
|
cuts[i-1] += 1
|
|
|
|
if cuts[-1] != len(alphas) - 1:
|
|
text.append('<sil>')
|
|
cuts.append(speech_lengths[0].tolist())
|
|
cuts.insert(-1, (cuts[-1] + cuts[-2]) * 0.5)
|
|
sec_fire_places = np.array(cuts) * sacle_rate
|
|
for i in range(1, len(sec_fire_places) - 1):
|
|
start, end = sec_fire_places[i], sec_fire_places[i+1]
|
|
if i == len(sec_fire_places) - 2:
|
|
end = time
|
|
time_stamp_list.append([int(round(start, 2) * 1000) + begin, int(round(end, 2) * 1000) + begin])
|
|
text = text[1:]
|
|
if npeak - 1 == nchar or npeak > nchar:
|
|
return time_stamp_list[:-1]
|
|
else:
|
|
return time_stamp_list
|
|
|
|
def time_stamp_lfr6_pl(us_alphas, us_cif_peak, char_list, begin_time=0.0, end_time=None):
|
|
START_END_THRESHOLD = 5
|
|
TIME_RATE = 10.0 * 6 / 1000 / 3 # 3 times upsampled
|
|
if len(us_alphas.shape) == 3:
|
|
alphas, cif_peak = us_alphas[0], us_cif_peak[0] # support inference batch_size=1 only
|
|
else:
|
|
alphas, cif_peak = us_alphas, us_cif_peak
|
|
num_frames = cif_peak.shape[0]
|
|
if char_list[-1] == '</s>':
|
|
char_list = char_list[:-1]
|
|
# char_list = [i for i in text]
|
|
timestamp_list = []
|
|
# for bicif model trained with large data, cif2 actually fires when a character starts
|
|
# so treat the frames between two peaks as the duration of the former token
|
|
fire_place = torch.where(cif_peak>1.0-1e-4)[0].cpu().numpy() - 1.5
|
|
num_peak = len(fire_place)
|
|
assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1
|
|
# begin silence
|
|
if fire_place[0] > START_END_THRESHOLD:
|
|
char_list.insert(0, '<sil>')
|
|
timestamp_list.append([0.0, fire_place[0]*TIME_RATE])
|
|
# tokens timestamp
|
|
for i in range(len(fire_place)-1):
|
|
# the peak is always a little ahead of the start time
|
|
# timestamp_list.append([(fire_place[i]-1.2)*TIME_RATE, fire_place[i+1]*TIME_RATE])
|
|
timestamp_list.append([(fire_place[i])*TIME_RATE, fire_place[i+1]*TIME_RATE])
|
|
# cut the duration to token and sil of the 0-weight frames last long
|
|
# tail token and end silence
|
|
if num_frames - fire_place[-1] > START_END_THRESHOLD:
|
|
_end = (num_frames + fire_place[-1]) / 2
|
|
timestamp_list[-1][1] = _end*TIME_RATE
|
|
timestamp_list.append([_end*TIME_RATE, num_frames*TIME_RATE])
|
|
char_list.append("<sil>")
|
|
else:
|
|
timestamp_list[-1][1] = num_frames*TIME_RATE
|
|
if begin_time: # add offset time in model with vad
|
|
for i in range(len(timestamp_list)):
|
|
timestamp_list[i][0] = timestamp_list[i][0] + begin_time / 1000.0
|
|
timestamp_list[i][1] = timestamp_list[i][1] + begin_time / 1000.0
|
|
res_txt = ""
|
|
for char, timestamp in zip(char_list, timestamp_list):
|
|
res_txt += "{} {} {};".format(char, timestamp[0], timestamp[1])
|
|
logging.warning(res_txt) # for test
|
|
res = []
|
|
for char, timestamp in zip(char_list, timestamp_list):
|
|
if char != '<sil>':
|
|
res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)])
|
|
return res
|
|
|