FunASR/funasr/models/transducer/model.py
shixian.shi c3c78fc5e7 bug fix
2024-01-12 18:23:56 +08:00

578 lines
21 KiB
Python

import logging
from contextlib import contextmanager
from distutils.version import LooseVersion
from typing import Dict
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import tempfile
import codecs
import requests
import re
import copy
import torch
import torch.nn as nn
import random
import numpy as np
import time
from funasr.losses.label_smoothing_loss import (
LabelSmoothingLoss, # noqa: H301
)
# from funasr.models.ctc import CTC
# from funasr.models.decoder.abs_decoder import AbsDecoder
# from funasr.models.e2e_asr_common import ErrorCalculator
# from funasr.models.encoder.abs_encoder import AbsEncoder
# from funasr.frontends.abs_frontend import AbsFrontend
# from funasr.models.postencoder.abs_postencoder import AbsPostEncoder
from funasr.models.paraformer.cif_predictor import mae_loss
# from funasr.models.preencoder.abs_preencoder import AbsPreEncoder
# from funasr.models.specaug.abs_specaug import AbsSpecAug
from funasr.models.transformer.utils.add_sos_eos import add_sos_eos
from funasr.models.transformer.utils.nets_utils import make_pad_mask, pad_list
from funasr.metrics.compute_acc import th_accuracy
from funasr.train_utils.device_funcs import force_gatherable
# from funasr.models.base_model import FunASRModel
# from funasr.models.paraformer.cif_predictor import CifPredictorV3
from funasr.models.paraformer.search import Hypothesis
from funasr.models.model_class_factory import *
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"):
from torch.cuda.amp import autocast
else:
# Nothing to do if torch<1.6.0
@contextmanager
def autocast(enabled=True):
yield
from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
from funasr.utils import postprocess_utils
from funasr.utils.datadir_writer import DatadirWriter
from funasr.models.transformer.utils.nets_utils import get_transducer_task_io
class Transducer(nn.Module):
"""ESPnet2ASRTransducerModel module definition."""
def __init__(
self,
frontend: Optional[str] = None,
frontend_conf: Optional[Dict] = None,
specaug: Optional[str] = None,
specaug_conf: Optional[Dict] = None,
normalize: str = None,
normalize_conf: Optional[Dict] = None,
encoder: str = None,
encoder_conf: Optional[Dict] = None,
decoder: str = None,
decoder_conf: Optional[Dict] = None,
joint_network: str = None,
joint_network_conf: Optional[Dict] = None,
transducer_weight: float = 1.0,
fastemit_lambda: float = 0.0,
auxiliary_ctc_weight: float = 0.0,
auxiliary_ctc_dropout_rate: float = 0.0,
auxiliary_lm_loss_weight: float = 0.0,
auxiliary_lm_loss_smoothing: float = 0.0,
input_size: int = 80,
vocab_size: int = -1,
ignore_id: int = -1,
blank_id: int = 0,
sos: int = 1,
eos: int = 2,
lsm_weight: float = 0.0,
length_normalized_loss: bool = False,
# report_cer: bool = True,
# report_wer: bool = True,
# sym_space: str = "<space>",
# sym_blank: str = "<blank>",
# extract_feats_in_collect_stats: bool = True,
share_embedding: bool = False,
# preencoder: Optional[AbsPreEncoder] = None,
# postencoder: Optional[AbsPostEncoder] = None,
**kwargs,
):
super().__init__()
if frontend is not None:
frontend_class = frontend_classes.get_class(frontend)
frontend = frontend_class(**frontend_conf)
if specaug is not None:
specaug_class = specaug_classes.get_class(specaug)
specaug = specaug_class(**specaug_conf)
if normalize is not None:
normalize_class = normalize_classes.get_class(normalize)
normalize = normalize_class(**normalize_conf)
encoder_class = encoder_classes.get_class(encoder)
encoder = encoder_class(input_size=input_size, **encoder_conf)
encoder_output_size = encoder.output_size()
decoder_class = decoder_classes.get_class(decoder)
decoder = decoder_class(
vocab_size=vocab_size,
encoder_output_size=encoder_output_size,
**decoder_conf,
)
decoder_output_size = decoder.output_size
joint_network_class = joint_network_classes.get_class(decoder)
joint_network = joint_network_class(
vocab_size,
encoder_output_size,
decoder_output_size,
**joint_network_conf,
)
self.criterion_transducer = None
self.error_calculator = None
self.use_auxiliary_ctc = auxiliary_ctc_weight > 0
self.use_auxiliary_lm_loss = auxiliary_lm_loss_weight > 0
if self.use_auxiliary_ctc:
self.ctc_lin = torch.nn.Linear(encoder.output_size(), vocab_size)
self.ctc_dropout_rate = auxiliary_ctc_dropout_rate
if self.use_auxiliary_lm_loss:
self.lm_lin = torch.nn.Linear(decoder.output_size, vocab_size)
self.lm_loss_smoothing = auxiliary_lm_loss_smoothing
self.transducer_weight = transducer_weight
self.fastemit_lambda = fastemit_lambda
self.auxiliary_ctc_weight = auxiliary_ctc_weight
self.auxiliary_lm_loss_weight = auxiliary_lm_loss_weight
self.blank_id = blank_id
self.sos = sos if sos is not None else vocab_size - 1
self.eos = eos if eos is not None else vocab_size - 1
self.vocab_size = vocab_size
self.ignore_id = ignore_id
self.frontend = frontend
self.specaug = specaug
self.normalize = normalize
self.encoder = encoder
self.decoder = decoder
self.joint_network = joint_network
self.criterion_att = LabelSmoothingLoss(
size=vocab_size,
padding_idx=ignore_id,
smoothing=lsm_weight,
normalize_length=length_normalized_loss,
)
#
# if report_cer or report_wer:
# self.error_calculator = ErrorCalculator(
# token_list, sym_space, sym_blank, report_cer, report_wer
# )
#
self.length_normalized_loss = length_normalized_loss
self.beam_search = None
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
**kwargs,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
# import pdb;
# pdb.set_trace()
if len(text_lengths.size()) > 1:
text_lengths = text_lengths[:, 0]
if len(speech_lengths.size()) > 1:
speech_lengths = speech_lengths[:, 0]
batch_size = speech.shape[0]
# 1. Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
if hasattr(self.encoder, 'overlap_chunk_cls') and self.encoder.overlap_chunk_cls is not None:
encoder_out, encoder_out_lens = self.encoder.overlap_chunk_cls.remove_chunk(encoder_out, encoder_out_lens,
chunk_outs=None)
# 2. Transducer-related I/O preparation
decoder_in, target, t_len, u_len = get_transducer_task_io(
text,
encoder_out_lens,
ignore_id=self.ignore_id,
)
# 3. Decoder
self.decoder.set_device(encoder_out.device)
decoder_out = self.decoder(decoder_in, u_len)
# 4. Joint Network
joint_out = self.joint_network(
encoder_out.unsqueeze(2), decoder_out.unsqueeze(1)
)
# 5. Losses
loss_trans, cer_trans, wer_trans = self._calc_transducer_loss(
encoder_out,
joint_out,
target,
t_len,
u_len,
)
loss_ctc, loss_lm = 0.0, 0.0
if self.use_auxiliary_ctc:
loss_ctc = self._calc_ctc_loss(
encoder_out,
target,
t_len,
u_len,
)
if self.use_auxiliary_lm_loss:
loss_lm = self._calc_lm_loss(decoder_out, target)
loss = (
self.transducer_weight * loss_trans
+ self.auxiliary_ctc_weight * loss_ctc
+ self.auxiliary_lm_loss_weight * loss_lm
)
stats = dict(
loss=loss.detach(),
loss_transducer=loss_trans.detach(),
aux_ctc_loss=loss_ctc.detach() if loss_ctc > 0.0 else None,
aux_lm_loss=loss_lm.detach() if loss_lm > 0.0 else None,
cer_transducer=cer_trans,
wer_transducer=wer_trans,
)
# force_gatherable: to-device and to-tensor if scalar for DataParallel
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def encode(
self, speech: torch.Tensor, speech_lengths: torch.Tensor, **kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Frontend + Encoder. Note that this method is used by asr_inference.py
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
ind: int
"""
with autocast(False):
# Data augmentation
if self.specaug is not None and self.training:
speech, speech_lengths = self.specaug(speech, speech_lengths)
# Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
if self.normalize is not None:
speech, speech_lengths = self.normalize(speech, speech_lengths)
# Forward encoder
# feats: (Batch, Length, Dim)
# -> encoder_out: (Batch, Length2, Dim2)
if self.encoder.interctc_use_conditioning:
encoder_out, encoder_out_lens, _ = self.encoder(
speech, speech_lengths, ctc=self.ctc
)
else:
encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths)
intermediate_outs = None
if isinstance(encoder_out, tuple):
intermediate_outs = encoder_out[1]
encoder_out = encoder_out[0]
if intermediate_outs is not None:
return (encoder_out, intermediate_outs), encoder_out_lens
return encoder_out, encoder_out_lens
def _calc_transducer_loss(
self,
encoder_out: torch.Tensor,
joint_out: torch.Tensor,
target: torch.Tensor,
t_len: torch.Tensor,
u_len: torch.Tensor,
) -> Tuple[torch.Tensor, Optional[float], Optional[float]]:
"""Compute Transducer loss.
Args:
encoder_out: Encoder output sequences. (B, T, D_enc)
joint_out: Joint Network output sequences (B, T, U, D_joint)
target: Target label ID sequences. (B, L)
t_len: Encoder output sequences lengths. (B,)
u_len: Target label ID sequences lengths. (B,)
Return:
loss_transducer: Transducer loss value.
cer_transducer: Character error rate for Transducer.
wer_transducer: Word Error Rate for Transducer.
"""
if self.criterion_transducer is None:
try:
from warp_rnnt import rnnt_loss as RNNTLoss
self.criterion_transducer = RNNTLoss
except ImportError:
logging.error(
"warp-rnnt was not installed."
"Please consult the installation documentation."
)
exit(1)
log_probs = torch.log_softmax(joint_out, dim=-1)
loss_transducer = self.criterion_transducer(
log_probs,
target,
t_len,
u_len,
reduction="mean",
blank=self.blank_id,
fastemit_lambda=self.fastemit_lambda,
gather=True,
)
if not self.training and (self.report_cer or self.report_wer):
if self.error_calculator is None:
from funasr.metrics import ErrorCalculatorTransducer as ErrorCalculator
self.error_calculator = ErrorCalculator(
self.decoder,
self.joint_network,
self.token_list,
self.sym_space,
self.sym_blank,
report_cer=self.report_cer,
report_wer=self.report_wer,
)
cer_transducer, wer_transducer = self.error_calculator(encoder_out, target, t_len)
return loss_transducer, cer_transducer, wer_transducer
return loss_transducer, None, None
def _calc_ctc_loss(
self,
encoder_out: torch.Tensor,
target: torch.Tensor,
t_len: torch.Tensor,
u_len: torch.Tensor,
) -> torch.Tensor:
"""Compute CTC loss.
Args:
encoder_out: Encoder output sequences. (B, T, D_enc)
target: Target label ID sequences. (B, L)
t_len: Encoder output sequences lengths. (B,)
u_len: Target label ID sequences lengths. (B,)
Return:
loss_ctc: CTC loss value.
"""
ctc_in = self.ctc_lin(
torch.nn.functional.dropout(encoder_out, p=self.ctc_dropout_rate)
)
ctc_in = torch.log_softmax(ctc_in.transpose(0, 1), dim=-1)
target_mask = target != 0
ctc_target = target[target_mask].cpu()
with torch.backends.cudnn.flags(deterministic=True):
loss_ctc = torch.nn.functional.ctc_loss(
ctc_in,
ctc_target,
t_len,
u_len,
zero_infinity=True,
reduction="sum",
)
loss_ctc /= target.size(0)
return loss_ctc
def _calc_lm_loss(
self,
decoder_out: torch.Tensor,
target: torch.Tensor,
) -> torch.Tensor:
"""Compute LM loss.
Args:
decoder_out: Decoder output sequences. (B, U, D_dec)
target: Target label ID sequences. (B, L)
Return:
loss_lm: LM loss value.
"""
lm_loss_in = self.lm_lin(decoder_out[:, :-1, :]).view(-1, self.vocab_size)
lm_target = target.view(-1).type(torch.int64)
with torch.no_grad():
true_dist = lm_loss_in.clone()
true_dist.fill_(self.lm_loss_smoothing / (self.vocab_size - 1))
# Ignore blank ID (0)
ignore = lm_target == 0
lm_target = lm_target.masked_fill(ignore, 0)
true_dist.scatter_(1, lm_target.unsqueeze(1), (1 - self.lm_loss_smoothing))
loss_lm = torch.nn.functional.kl_div(
torch.log_softmax(lm_loss_in, dim=1),
true_dist,
reduction="none",
)
loss_lm = loss_lm.masked_fill(ignore.unsqueeze(1), 0).sum() / decoder_out.size(
0
)
return loss_lm
def init_beam_search(self,
**kwargs,
):
from funasr.models.transformer.search import BeamSearch
from funasr.models.transformer.scorers.ctc import CTCPrefixScorer
from funasr.models.transformer.scorers.length_bonus import LengthBonus
# 1. Build ASR model
scorers = {}
if self.ctc != None:
ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos)
scorers.update(
ctc=ctc
)
token_list = kwargs.get("token_list")
scorers.update(
length_bonus=LengthBonus(len(token_list)),
)
# 3. Build ngram model
# ngram is not supported now
ngram = None
scorers["ngram"] = ngram
weights = dict(
decoder=1.0 - kwargs.get("decoding_ctc_weight"),
ctc=kwargs.get("decoding_ctc_weight", 0.0),
lm=kwargs.get("lm_weight", 0.0),
ngram=kwargs.get("ngram_weight", 0.0),
length_bonus=kwargs.get("penalty", 0.0),
)
beam_search = BeamSearch(
beam_size=kwargs.get("beam_size", 2),
weights=weights,
scorers=scorers,
sos=self.sos,
eos=self.eos,
vocab_size=len(token_list),
token_list=token_list,
pre_beam_score_key=None if self.ctc_weight == 1.0 else "full",
)
# beam_search.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval()
# for scorer in scorers.values():
# if isinstance(scorer, torch.nn.Module):
# scorer.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval()
self.beam_search = beam_search
def generate(self,
data_in: list,
data_lengths: list=None,
key: list=None,
tokenizer=None,
**kwargs,
):
if kwargs.get("batch_size", 1) > 1:
raise NotImplementedError("batch decoding is not implemented")
# init beamsearch
is_use_ctc = kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None
is_use_lm = kwargs.get("lm_weight", 0.0) > 0.00001 and kwargs.get("lm_file", None) is not None
if self.beam_search is None and (is_use_lm or is_use_ctc):
logging.info("enable beam_search")
self.init_beam_search(**kwargs)
self.nbest = kwargs.get("nbest", 1)
meta_data = {}
# extract fbank feats
time1 = time.perf_counter()
audio_sample_list = load_audio_text_image_video(data_in, fs=self.frontend.fs, audio_fs=kwargs.get("fs", 16000))
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=self.frontend)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data["batch_data_time"] = speech_lengths.sum().item() * self.frontend.frame_shift * self.frontend.lfr_n / 1000
speech = speech.to(device=kwargs["device"])
speech_lengths = speech_lengths.to(device=kwargs["device"])
# Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
# c. Passed the encoder result and the beam search
nbest_hyps = self.beam_search(
x=encoder_out[0], maxlenratio=kwargs.get("maxlenratio", 0.0), minlenratio=kwargs.get("minlenratio", 0.0)
)
nbest_hyps = nbest_hyps[: self.nbest]
results = []
b, n, d = encoder_out.size()
for i in range(b):
for nbest_idx, hyp in enumerate(nbest_hyps):
ibest_writer = None
if ibest_writer is None and kwargs.get("output_dir") is not None:
writer = DatadirWriter(kwargs.get("output_dir"))
ibest_writer = writer[f"{nbest_idx+1}best_recog"]
# remove sos/eos and get results
last_pos = -1
if isinstance(hyp.yseq, list):
token_int = hyp.yseq[1:last_pos]
else:
token_int = hyp.yseq[1:last_pos].tolist()
# remove blank symbol id, which is assumed to be 0
token_int = list(filter(lambda x: x != self.eos and x != self.sos and x != self.blank_id, token_int))
# Change integer-ids to tokens
token = tokenizer.ids2tokens(token_int)
text = tokenizer.tokens2text(token)
text_postprocessed, _ = postprocess_utils.sentence_postprocess(token)
result_i = {"key": key[i], "token": token, "text": text, "text_postprocessed": text_postprocessed}
results.append(result_i)
if ibest_writer is not None:
ibest_writer["token"][key[i]] = " ".join(token)
ibest_writer["text"][key[i]] = text
ibest_writer["text_postprocessed"][key[i]] = text_postprocessed
return results, meta_data