mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
702 lines
22 KiB
Python
702 lines
22 KiB
Python
|
|
"""Conformer encoder definition."""
|
|
|
|
import logging
|
|
from typing import Union, Dict, List, Tuple, Optional
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
|
|
from funasr.models.bat.attention import (
|
|
RelPositionMultiHeadedAttentionChunk,
|
|
)
|
|
from funasr.models.transformer.embedding import (
|
|
StreamingRelPositionalEncoding,
|
|
)
|
|
from funasr.models.transformer.layer_norm import LayerNorm
|
|
from funasr.models.transformer.utils.nets_utils import get_activation
|
|
from funasr.models.transformer.utils.nets_utils import (
|
|
TooShortUttError,
|
|
check_short_utt,
|
|
make_chunk_mask,
|
|
make_source_mask,
|
|
)
|
|
from funasr.models.transformer.positionwise_feed_forward import (
|
|
PositionwiseFeedForward,
|
|
)
|
|
from funasr.models.transformer.utils.repeat import repeat, MultiBlocks
|
|
from funasr.models.transformer.utils.subsampling import TooShortUttError
|
|
from funasr.models.transformer.utils.subsampling import check_short_utt
|
|
from funasr.models.transformer.utils.subsampling import StreamingConvInput
|
|
from funasr.register import tables
|
|
|
|
|
|
|
|
class ChunkEncoderLayer(nn.Module):
|
|
"""Chunk Conformer module definition.
|
|
Args:
|
|
block_size: Input/output size.
|
|
self_att: Self-attention module instance.
|
|
feed_forward: Feed-forward module instance.
|
|
feed_forward_macaron: Feed-forward module instance for macaron network.
|
|
conv_mod: Convolution module instance.
|
|
norm_class: Normalization module class.
|
|
norm_args: Normalization module arguments.
|
|
dropout_rate: Dropout rate.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
block_size: int,
|
|
self_att: torch.nn.Module,
|
|
feed_forward: torch.nn.Module,
|
|
feed_forward_macaron: torch.nn.Module,
|
|
conv_mod: torch.nn.Module,
|
|
norm_class: torch.nn.Module = LayerNorm,
|
|
norm_args: Dict = {},
|
|
dropout_rate: float = 0.0,
|
|
) -> None:
|
|
"""Construct a Conformer object."""
|
|
super().__init__()
|
|
|
|
self.self_att = self_att
|
|
|
|
self.feed_forward = feed_forward
|
|
self.feed_forward_macaron = feed_forward_macaron
|
|
self.feed_forward_scale = 0.5
|
|
|
|
self.conv_mod = conv_mod
|
|
|
|
self.norm_feed_forward = norm_class(block_size, **norm_args)
|
|
self.norm_self_att = norm_class(block_size, **norm_args)
|
|
|
|
self.norm_macaron = norm_class(block_size, **norm_args)
|
|
self.norm_conv = norm_class(block_size, **norm_args)
|
|
self.norm_final = norm_class(block_size, **norm_args)
|
|
|
|
self.dropout = torch.nn.Dropout(dropout_rate)
|
|
|
|
self.block_size = block_size
|
|
self.cache = None
|
|
|
|
def reset_streaming_cache(self, left_context: int, device: torch.device) -> None:
|
|
"""Initialize/Reset self-attention and convolution modules cache for streaming.
|
|
Args:
|
|
left_context: Number of left frames during chunk-by-chunk inference.
|
|
device: Device to use for cache tensor.
|
|
"""
|
|
self.cache = [
|
|
torch.zeros(
|
|
(1, left_context, self.block_size),
|
|
device=device,
|
|
),
|
|
torch.zeros(
|
|
(
|
|
1,
|
|
self.block_size,
|
|
self.conv_mod.kernel_size - 1,
|
|
),
|
|
device=device,
|
|
),
|
|
]
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
pos_enc: torch.Tensor,
|
|
mask: torch.Tensor,
|
|
chunk_mask: Optional[torch.Tensor] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""Encode input sequences.
|
|
Args:
|
|
x: Conformer input sequences. (B, T, D_block)
|
|
pos_enc: Positional embedding sequences. (B, 2 * (T - 1), D_block)
|
|
mask: Source mask. (B, T)
|
|
chunk_mask: Chunk mask. (T_2, T_2)
|
|
Returns:
|
|
x: Conformer output sequences. (B, T, D_block)
|
|
mask: Source mask. (B, T)
|
|
pos_enc: Positional embedding sequences. (B, 2 * (T - 1), D_block)
|
|
"""
|
|
residual = x
|
|
|
|
x = self.norm_macaron(x)
|
|
x = residual + self.feed_forward_scale * self.dropout(
|
|
self.feed_forward_macaron(x)
|
|
)
|
|
|
|
residual = x
|
|
x = self.norm_self_att(x)
|
|
x_q = x
|
|
x = residual + self.dropout(
|
|
self.self_att(
|
|
x_q,
|
|
x,
|
|
x,
|
|
pos_enc,
|
|
mask,
|
|
chunk_mask=chunk_mask,
|
|
)
|
|
)
|
|
|
|
residual = x
|
|
|
|
x = self.norm_conv(x)
|
|
x, _ = self.conv_mod(x)
|
|
x = residual + self.dropout(x)
|
|
residual = x
|
|
|
|
x = self.norm_feed_forward(x)
|
|
x = residual + self.feed_forward_scale * self.dropout(self.feed_forward(x))
|
|
|
|
x = self.norm_final(x)
|
|
return x, mask, pos_enc
|
|
|
|
def chunk_forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
pos_enc: torch.Tensor,
|
|
mask: torch.Tensor,
|
|
chunk_size: int = 16,
|
|
left_context: int = 0,
|
|
right_context: int = 0,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Encode chunk of input sequence.
|
|
Args:
|
|
x: Conformer input sequences. (B, T, D_block)
|
|
pos_enc: Positional embedding sequences. (B, 2 * (T - 1), D_block)
|
|
mask: Source mask. (B, T_2)
|
|
left_context: Number of frames in left context.
|
|
right_context: Number of frames in right context.
|
|
Returns:
|
|
x: Conformer output sequences. (B, T, D_block)
|
|
pos_enc: Positional embedding sequences. (B, 2 * (T - 1), D_block)
|
|
"""
|
|
residual = x
|
|
|
|
x = self.norm_macaron(x)
|
|
x = residual + self.feed_forward_scale * self.feed_forward_macaron(x)
|
|
|
|
residual = x
|
|
x = self.norm_self_att(x)
|
|
if left_context > 0:
|
|
key = torch.cat([self.cache[0], x], dim=1)
|
|
else:
|
|
key = x
|
|
val = key
|
|
|
|
if right_context > 0:
|
|
att_cache = key[:, -(left_context + right_context) : -right_context, :]
|
|
else:
|
|
att_cache = key[:, -left_context:, :]
|
|
x = residual + self.self_att(
|
|
x,
|
|
key,
|
|
val,
|
|
pos_enc,
|
|
mask,
|
|
left_context=left_context,
|
|
)
|
|
|
|
residual = x
|
|
x = self.norm_conv(x)
|
|
x, conv_cache = self.conv_mod(
|
|
x, cache=self.cache[1], right_context=right_context
|
|
)
|
|
x = residual + x
|
|
residual = x
|
|
|
|
x = self.norm_feed_forward(x)
|
|
x = residual + self.feed_forward_scale * self.feed_forward(x)
|
|
|
|
x = self.norm_final(x)
|
|
self.cache = [att_cache, conv_cache]
|
|
|
|
return x, pos_enc
|
|
|
|
|
|
|
|
class CausalConvolution(nn.Module):
|
|
"""ConformerConvolution module definition.
|
|
Args:
|
|
channels: The number of channels.
|
|
kernel_size: Size of the convolving kernel.
|
|
activation: Type of activation function.
|
|
norm_args: Normalization module arguments.
|
|
causal: Whether to use causal convolution (set to True if streaming).
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
channels: int,
|
|
kernel_size: int,
|
|
activation: torch.nn.Module = torch.nn.ReLU(),
|
|
norm_args: Dict = {},
|
|
causal: bool = False,
|
|
) -> None:
|
|
"""Construct an ConformerConvolution object."""
|
|
super().__init__()
|
|
|
|
assert (kernel_size - 1) % 2 == 0
|
|
|
|
self.kernel_size = kernel_size
|
|
|
|
self.pointwise_conv1 = torch.nn.Conv1d(
|
|
channels,
|
|
2 * channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
)
|
|
|
|
if causal:
|
|
self.lorder = kernel_size - 1
|
|
padding = 0
|
|
else:
|
|
self.lorder = 0
|
|
padding = (kernel_size - 1) // 2
|
|
|
|
self.depthwise_conv = torch.nn.Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
stride=1,
|
|
padding=padding,
|
|
groups=channels,
|
|
)
|
|
self.norm = torch.nn.BatchNorm1d(channels, **norm_args)
|
|
self.pointwise_conv2 = torch.nn.Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
)
|
|
|
|
self.activation = activation
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
cache: Optional[torch.Tensor] = None,
|
|
right_context: int = 0,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Compute convolution module.
|
|
Args:
|
|
x: ConformerConvolution input sequences. (B, T, D_hidden)
|
|
cache: ConformerConvolution input cache. (1, conv_kernel, D_hidden)
|
|
right_context: Number of frames in right context.
|
|
Returns:
|
|
x: ConformerConvolution output sequences. (B, T, D_hidden)
|
|
cache: ConformerConvolution output cache. (1, conv_kernel, D_hidden)
|
|
"""
|
|
x = self.pointwise_conv1(x.transpose(1, 2))
|
|
x = torch.nn.functional.glu(x, dim=1)
|
|
|
|
if self.lorder > 0:
|
|
if cache is None:
|
|
x = torch.nn.functional.pad(x, (self.lorder, 0), "constant", 0.0)
|
|
else:
|
|
x = torch.cat([cache, x], dim=2)
|
|
|
|
if right_context > 0:
|
|
cache = x[:, :, -(self.lorder + right_context) : -right_context]
|
|
else:
|
|
cache = x[:, :, -self.lorder :]
|
|
|
|
x = self.depthwise_conv(x)
|
|
x = self.activation(self.norm(x))
|
|
|
|
x = self.pointwise_conv2(x).transpose(1, 2)
|
|
|
|
return x, cache
|
|
|
|
@tables.register("encoder_classes", "ConformerChunkEncoder")
|
|
class ConformerChunkEncoder(nn.Module):
|
|
"""Encoder module definition.
|
|
Args:
|
|
input_size: Input size.
|
|
body_conf: Encoder body configuration.
|
|
input_conf: Encoder input configuration.
|
|
main_conf: Encoder main configuration.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_size: int,
|
|
output_size: int = 256,
|
|
attention_heads: int = 4,
|
|
linear_units: int = 2048,
|
|
num_blocks: int = 6,
|
|
dropout_rate: float = 0.1,
|
|
positional_dropout_rate: float = 0.1,
|
|
attention_dropout_rate: float = 0.0,
|
|
embed_vgg_like: bool = False,
|
|
normalize_before: bool = True,
|
|
concat_after: bool = False,
|
|
positionwise_layer_type: str = "linear",
|
|
positionwise_conv_kernel_size: int = 3,
|
|
macaron_style: bool = False,
|
|
rel_pos_type: str = "legacy",
|
|
pos_enc_layer_type: str = "rel_pos",
|
|
selfattention_layer_type: str = "rel_selfattn",
|
|
activation_type: str = "swish",
|
|
use_cnn_module: bool = True,
|
|
zero_triu: bool = False,
|
|
norm_type: str = "layer_norm",
|
|
cnn_module_kernel: int = 31,
|
|
conv_mod_norm_eps: float = 0.00001,
|
|
conv_mod_norm_momentum: float = 0.1,
|
|
simplified_att_score: bool = False,
|
|
dynamic_chunk_training: bool = False,
|
|
short_chunk_threshold: float = 0.75,
|
|
short_chunk_size: int = 25,
|
|
left_chunk_size: int = 0,
|
|
time_reduction_factor: int = 1,
|
|
unified_model_training: bool = False,
|
|
default_chunk_size: int = 16,
|
|
jitter_range: int = 4,
|
|
subsampling_factor: int = 1,
|
|
) -> None:
|
|
"""Construct an Encoder object."""
|
|
super().__init__()
|
|
|
|
|
|
self.embed = StreamingConvInput(
|
|
input_size,
|
|
output_size,
|
|
subsampling_factor,
|
|
vgg_like=embed_vgg_like,
|
|
output_size=output_size,
|
|
)
|
|
|
|
self.pos_enc = StreamingRelPositionalEncoding(
|
|
output_size,
|
|
positional_dropout_rate,
|
|
)
|
|
|
|
activation = get_activation(
|
|
activation_type
|
|
)
|
|
|
|
pos_wise_args = (
|
|
output_size,
|
|
linear_units,
|
|
positional_dropout_rate,
|
|
activation,
|
|
)
|
|
|
|
conv_mod_norm_args = {
|
|
"eps": conv_mod_norm_eps,
|
|
"momentum": conv_mod_norm_momentum,
|
|
}
|
|
|
|
conv_mod_args = (
|
|
output_size,
|
|
cnn_module_kernel,
|
|
activation,
|
|
conv_mod_norm_args,
|
|
dynamic_chunk_training or unified_model_training,
|
|
)
|
|
|
|
mult_att_args = (
|
|
attention_heads,
|
|
output_size,
|
|
attention_dropout_rate,
|
|
simplified_att_score,
|
|
)
|
|
|
|
|
|
fn_modules = []
|
|
for _ in range(num_blocks):
|
|
module = lambda: ChunkEncoderLayer(
|
|
output_size,
|
|
RelPositionMultiHeadedAttentionChunk(*mult_att_args),
|
|
PositionwiseFeedForward(*pos_wise_args),
|
|
PositionwiseFeedForward(*pos_wise_args),
|
|
CausalConvolution(*conv_mod_args),
|
|
dropout_rate=dropout_rate,
|
|
)
|
|
fn_modules.append(module)
|
|
|
|
self.encoders = MultiBlocks(
|
|
[fn() for fn in fn_modules],
|
|
output_size,
|
|
)
|
|
|
|
self._output_size = output_size
|
|
|
|
self.dynamic_chunk_training = dynamic_chunk_training
|
|
self.short_chunk_threshold = short_chunk_threshold
|
|
self.short_chunk_size = short_chunk_size
|
|
self.left_chunk_size = left_chunk_size
|
|
|
|
self.unified_model_training = unified_model_training
|
|
self.default_chunk_size = default_chunk_size
|
|
self.jitter_range = jitter_range
|
|
|
|
self.time_reduction_factor = time_reduction_factor
|
|
|
|
def output_size(self) -> int:
|
|
return self._output_size
|
|
|
|
def get_encoder_input_raw_size(self, size: int, hop_length: int) -> int:
|
|
"""Return the corresponding number of sample for a given chunk size, in frames.
|
|
Where size is the number of features frames after applying subsampling.
|
|
Args:
|
|
size: Number of frames after subsampling.
|
|
hop_length: Frontend's hop length
|
|
Returns:
|
|
: Number of raw samples
|
|
"""
|
|
return self.embed.get_size_before_subsampling(size) * hop_length
|
|
|
|
def get_encoder_input_size(self, size: int) -> int:
|
|
"""Return the corresponding number of sample for a given chunk size, in frames.
|
|
Where size is the number of features frames after applying subsampling.
|
|
Args:
|
|
size: Number of frames after subsampling.
|
|
Returns:
|
|
: Number of raw samples
|
|
"""
|
|
return self.embed.get_size_before_subsampling(size)
|
|
|
|
|
|
def reset_streaming_cache(self, left_context: int, device: torch.device) -> None:
|
|
"""Initialize/Reset encoder streaming cache.
|
|
Args:
|
|
left_context: Number of frames in left context.
|
|
device: Device ID.
|
|
"""
|
|
return self.encoders.reset_streaming_cache(left_context, device)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_len: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Encode input sequences.
|
|
Args:
|
|
x: Encoder input features. (B, T_in, F)
|
|
x_len: Encoder input features lengths. (B,)
|
|
Returns:
|
|
x: Encoder outputs. (B, T_out, D_enc)
|
|
x_len: Encoder outputs lenghts. (B,)
|
|
"""
|
|
short_status, limit_size = check_short_utt(
|
|
self.embed.subsampling_factor, x.size(1)
|
|
)
|
|
|
|
if short_status:
|
|
raise TooShortUttError(
|
|
f"has {x.size(1)} frames and is too short for subsampling "
|
|
+ f"(it needs more than {limit_size} frames), return empty results",
|
|
x.size(1),
|
|
limit_size,
|
|
)
|
|
|
|
mask = make_source_mask(x_len).to(x.device)
|
|
|
|
if self.unified_model_training:
|
|
if self.training:
|
|
chunk_size = self.default_chunk_size + torch.randint(-self.jitter_range, self.jitter_range+1, (1,)).item()
|
|
else:
|
|
chunk_size = self.default_chunk_size
|
|
x, mask = self.embed(x, mask, chunk_size)
|
|
pos_enc = self.pos_enc(x)
|
|
chunk_mask = make_chunk_mask(
|
|
x.size(1),
|
|
chunk_size,
|
|
left_chunk_size=self.left_chunk_size,
|
|
device=x.device,
|
|
)
|
|
x_utt = self.encoders(
|
|
x,
|
|
pos_enc,
|
|
mask,
|
|
chunk_mask=None,
|
|
)
|
|
x_chunk = self.encoders(
|
|
x,
|
|
pos_enc,
|
|
mask,
|
|
chunk_mask=chunk_mask,
|
|
)
|
|
|
|
olens = mask.eq(0).sum(1)
|
|
if self.time_reduction_factor > 1:
|
|
x_utt = x_utt[:,::self.time_reduction_factor,:]
|
|
x_chunk = x_chunk[:,::self.time_reduction_factor,:]
|
|
olens = torch.floor_divide(olens-1, self.time_reduction_factor) + 1
|
|
|
|
return x_utt, x_chunk, olens
|
|
|
|
elif self.dynamic_chunk_training:
|
|
max_len = x.size(1)
|
|
if self.training:
|
|
chunk_size = torch.randint(1, max_len, (1,)).item()
|
|
|
|
if chunk_size > (max_len * self.short_chunk_threshold):
|
|
chunk_size = max_len
|
|
else:
|
|
chunk_size = (chunk_size % self.short_chunk_size) + 1
|
|
else:
|
|
chunk_size = self.default_chunk_size
|
|
|
|
x, mask = self.embed(x, mask, chunk_size)
|
|
pos_enc = self.pos_enc(x)
|
|
|
|
chunk_mask = make_chunk_mask(
|
|
x.size(1),
|
|
chunk_size,
|
|
left_chunk_size=self.left_chunk_size,
|
|
device=x.device,
|
|
)
|
|
else:
|
|
x, mask = self.embed(x, mask, None)
|
|
pos_enc = self.pos_enc(x)
|
|
chunk_mask = None
|
|
x = self.encoders(
|
|
x,
|
|
pos_enc,
|
|
mask,
|
|
chunk_mask=chunk_mask,
|
|
)
|
|
|
|
olens = mask.eq(0).sum(1)
|
|
if self.time_reduction_factor > 1:
|
|
x = x[:,::self.time_reduction_factor,:]
|
|
olens = torch.floor_divide(olens-1, self.time_reduction_factor) + 1
|
|
|
|
return x, olens, None
|
|
|
|
def full_utt_forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_len: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""Encode input sequences.
|
|
Args:
|
|
x: Encoder input features. (B, T_in, F)
|
|
x_len: Encoder input features lengths. (B,)
|
|
Returns:
|
|
x: Encoder outputs. (B, T_out, D_enc)
|
|
x_len: Encoder outputs lenghts. (B,)
|
|
"""
|
|
short_status, limit_size = check_short_utt(
|
|
self.embed.subsampling_factor, x.size(1)
|
|
)
|
|
|
|
if short_status:
|
|
raise TooShortUttError(
|
|
f"has {x.size(1)} frames and is too short for subsampling "
|
|
+ f"(it needs more than {limit_size} frames), return empty results",
|
|
x.size(1),
|
|
limit_size,
|
|
)
|
|
|
|
mask = make_source_mask(x_len).to(x.device)
|
|
x, mask = self.embed(x, mask, None)
|
|
pos_enc = self.pos_enc(x)
|
|
x_utt = self.encoders(
|
|
x,
|
|
pos_enc,
|
|
mask,
|
|
chunk_mask=None,
|
|
)
|
|
|
|
if self.time_reduction_factor > 1:
|
|
x_utt = x_utt[:,::self.time_reduction_factor,:]
|
|
return x_utt
|
|
|
|
def simu_chunk_forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_len: torch.Tensor,
|
|
chunk_size: int = 16,
|
|
left_context: int = 32,
|
|
right_context: int = 0,
|
|
) -> torch.Tensor:
|
|
short_status, limit_size = check_short_utt(
|
|
self.embed.subsampling_factor, x.size(1)
|
|
)
|
|
|
|
if short_status:
|
|
raise TooShortUttError(
|
|
f"has {x.size(1)} frames and is too short for subsampling "
|
|
+ f"(it needs more than {limit_size} frames), return empty results",
|
|
x.size(1),
|
|
limit_size,
|
|
)
|
|
|
|
mask = make_source_mask(x_len)
|
|
|
|
x, mask = self.embed(x, mask, chunk_size)
|
|
pos_enc = self.pos_enc(x)
|
|
chunk_mask = make_chunk_mask(
|
|
x.size(1),
|
|
chunk_size,
|
|
left_chunk_size=self.left_chunk_size,
|
|
device=x.device,
|
|
)
|
|
|
|
x = self.encoders(
|
|
x,
|
|
pos_enc,
|
|
mask,
|
|
chunk_mask=chunk_mask,
|
|
)
|
|
olens = mask.eq(0).sum(1)
|
|
if self.time_reduction_factor > 1:
|
|
x = x[:,::self.time_reduction_factor,:]
|
|
|
|
return x
|
|
|
|
def chunk_forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
x_len: torch.Tensor,
|
|
processed_frames: torch.tensor,
|
|
chunk_size: int = 16,
|
|
left_context: int = 32,
|
|
right_context: int = 0,
|
|
) -> torch.Tensor:
|
|
"""Encode input sequences as chunks.
|
|
Args:
|
|
x: Encoder input features. (1, T_in, F)
|
|
x_len: Encoder input features lengths. (1,)
|
|
processed_frames: Number of frames already seen.
|
|
left_context: Number of frames in left context.
|
|
right_context: Number of frames in right context.
|
|
Returns:
|
|
x: Encoder outputs. (B, T_out, D_enc)
|
|
"""
|
|
mask = make_source_mask(x_len)
|
|
x, mask = self.embed(x, mask, None)
|
|
|
|
if left_context > 0:
|
|
processed_mask = (
|
|
torch.arange(left_context, device=x.device)
|
|
.view(1, left_context)
|
|
.flip(1)
|
|
)
|
|
processed_mask = processed_mask >= processed_frames
|
|
mask = torch.cat([processed_mask, mask], dim=1)
|
|
pos_enc = self.pos_enc(x, left_context=left_context)
|
|
x = self.encoders.chunk_forward(
|
|
x,
|
|
pos_enc,
|
|
mask,
|
|
chunk_size=chunk_size,
|
|
left_context=left_context,
|
|
right_context=right_context,
|
|
)
|
|
|
|
if right_context > 0:
|
|
x = x[:, 0:-right_context, :]
|
|
|
|
if self.time_reduction_factor > 1:
|
|
x = x[:,::self.time_reduction_factor,:]
|
|
return x
|