mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
239 lines
8.0 KiB
Python
239 lines
8.0 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright 2019 Shigeki Karita
|
|
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
|
|
|
|
"""Multi-Head Attention layer definition."""
|
|
|
|
import math
|
|
|
|
import numpy
|
|
import torch
|
|
from torch import nn
|
|
from typing import Optional, Tuple
|
|
|
|
import torch.nn.functional as F
|
|
from funasr.models.transformer.utils.nets_utils import make_pad_mask
|
|
import funasr.models.lora.layers as lora
|
|
|
|
|
|
class RelPositionMultiHeadedAttentionChunk(torch.nn.Module):
|
|
"""RelPositionMultiHeadedAttention definition.
|
|
Args:
|
|
num_heads: Number of attention heads.
|
|
embed_size: Embedding size.
|
|
dropout_rate: Dropout rate.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_heads: int,
|
|
embed_size: int,
|
|
dropout_rate: float = 0.0,
|
|
simplified_attention_score: bool = False,
|
|
) -> None:
|
|
"""Construct an MultiHeadedAttention object."""
|
|
super().__init__()
|
|
|
|
self.d_k = embed_size // num_heads
|
|
self.num_heads = num_heads
|
|
|
|
assert self.d_k * num_heads == embed_size, (
|
|
"embed_size (%d) must be divisible by num_heads (%d)",
|
|
(embed_size, num_heads),
|
|
)
|
|
|
|
self.linear_q = torch.nn.Linear(embed_size, embed_size)
|
|
self.linear_k = torch.nn.Linear(embed_size, embed_size)
|
|
self.linear_v = torch.nn.Linear(embed_size, embed_size)
|
|
|
|
self.linear_out = torch.nn.Linear(embed_size, embed_size)
|
|
|
|
if simplified_attention_score:
|
|
self.linear_pos = torch.nn.Linear(embed_size, num_heads)
|
|
|
|
self.compute_att_score = self.compute_simplified_attention_score
|
|
else:
|
|
self.linear_pos = torch.nn.Linear(embed_size, embed_size, bias=False)
|
|
|
|
self.pos_bias_u = torch.nn.Parameter(torch.Tensor(num_heads, self.d_k))
|
|
self.pos_bias_v = torch.nn.Parameter(torch.Tensor(num_heads, self.d_k))
|
|
torch.nn.init.xavier_uniform_(self.pos_bias_u)
|
|
torch.nn.init.xavier_uniform_(self.pos_bias_v)
|
|
|
|
self.compute_att_score = self.compute_attention_score
|
|
|
|
self.dropout = torch.nn.Dropout(p=dropout_rate)
|
|
self.attn = None
|
|
|
|
def rel_shift(self, x: torch.Tensor, left_context: int = 0) -> torch.Tensor:
|
|
"""Compute relative positional encoding.
|
|
Args:
|
|
x: Input sequence. (B, H, T_1, 2 * T_1 - 1)
|
|
left_context: Number of frames in left context.
|
|
Returns:
|
|
x: Output sequence. (B, H, T_1, T_2)
|
|
"""
|
|
batch_size, n_heads, time1, n = x.shape
|
|
time2 = time1 + left_context
|
|
|
|
batch_stride, n_heads_stride, time1_stride, n_stride = x.stride()
|
|
|
|
return x.as_strided(
|
|
(batch_size, n_heads, time1, time2),
|
|
(batch_stride, n_heads_stride, time1_stride - n_stride, n_stride),
|
|
storage_offset=(n_stride * (time1 - 1)),
|
|
)
|
|
|
|
def compute_simplified_attention_score(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
pos_enc: torch.Tensor,
|
|
left_context: int = 0,
|
|
) -> torch.Tensor:
|
|
"""Simplified attention score computation.
|
|
Reference: https://github.com/k2-fsa/icefall/pull/458
|
|
Args:
|
|
query: Transformed query tensor. (B, H, T_1, d_k)
|
|
key: Transformed key tensor. (B, H, T_2, d_k)
|
|
pos_enc: Positional embedding tensor. (B, 2 * T_1 - 1, size)
|
|
left_context: Number of frames in left context.
|
|
Returns:
|
|
: Attention score. (B, H, T_1, T_2)
|
|
"""
|
|
pos_enc = self.linear_pos(pos_enc)
|
|
|
|
matrix_ac = torch.matmul(query, key.transpose(2, 3))
|
|
|
|
matrix_bd = self.rel_shift(
|
|
pos_enc.transpose(1, 2).unsqueeze(2).repeat(1, 1, query.size(2), 1),
|
|
left_context=left_context,
|
|
)
|
|
|
|
return (matrix_ac + matrix_bd) / math.sqrt(self.d_k)
|
|
|
|
def compute_attention_score(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
pos_enc: torch.Tensor,
|
|
left_context: int = 0,
|
|
) -> torch.Tensor:
|
|
"""Attention score computation.
|
|
Args:
|
|
query: Transformed query tensor. (B, H, T_1, d_k)
|
|
key: Transformed key tensor. (B, H, T_2, d_k)
|
|
pos_enc: Positional embedding tensor. (B, 2 * T_1 - 1, size)
|
|
left_context: Number of frames in left context.
|
|
Returns:
|
|
: Attention score. (B, H, T_1, T_2)
|
|
"""
|
|
p = self.linear_pos(pos_enc).view(pos_enc.size(0), -1, self.num_heads, self.d_k)
|
|
|
|
query = query.transpose(1, 2)
|
|
q_with_bias_u = (query + self.pos_bias_u).transpose(1, 2)
|
|
q_with_bias_v = (query + self.pos_bias_v).transpose(1, 2)
|
|
|
|
matrix_ac = torch.matmul(q_with_bias_u, key.transpose(-2, -1))
|
|
|
|
matrix_bd = torch.matmul(q_with_bias_v, p.permute(0, 2, 3, 1))
|
|
matrix_bd = self.rel_shift(matrix_bd, left_context=left_context)
|
|
|
|
return (matrix_ac + matrix_bd) / math.sqrt(self.d_k)
|
|
|
|
def forward_qkv(
|
|
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""Transform query, key and value.
|
|
Args:
|
|
query: Query tensor. (B, T_1, size)
|
|
key: Key tensor. (B, T_2, size)
|
|
v: Value tensor. (B, T_2, size)
|
|
Returns:
|
|
q: Transformed query tensor. (B, H, T_1, d_k)
|
|
k: Transformed key tensor. (B, H, T_2, d_k)
|
|
v: Transformed value tensor. (B, H, T_2, d_k)
|
|
"""
|
|
n_batch = query.size(0)
|
|
|
|
q = (
|
|
self.linear_q(query)
|
|
.view(n_batch, -1, self.num_heads, self.d_k)
|
|
.transpose(1, 2)
|
|
)
|
|
k = (
|
|
self.linear_k(key)
|
|
.view(n_batch, -1, self.num_heads, self.d_k)
|
|
.transpose(1, 2)
|
|
)
|
|
v = (
|
|
self.linear_v(value)
|
|
.view(n_batch, -1, self.num_heads, self.d_k)
|
|
.transpose(1, 2)
|
|
)
|
|
|
|
return q, k, v
|
|
|
|
def forward_attention(
|
|
self,
|
|
value: torch.Tensor,
|
|
scores: torch.Tensor,
|
|
mask: torch.Tensor,
|
|
chunk_mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
"""Compute attention context vector.
|
|
Args:
|
|
value: Transformed value. (B, H, T_2, d_k)
|
|
scores: Attention score. (B, H, T_1, T_2)
|
|
mask: Source mask. (B, T_2)
|
|
chunk_mask: Chunk mask. (T_1, T_1)
|
|
Returns:
|
|
attn_output: Transformed value weighted by attention score. (B, T_1, H * d_k)
|
|
"""
|
|
batch_size = scores.size(0)
|
|
mask = mask.unsqueeze(1).unsqueeze(2)
|
|
if chunk_mask is not None:
|
|
mask = chunk_mask.unsqueeze(0).unsqueeze(1) | mask
|
|
scores = scores.masked_fill(mask, float("-inf"))
|
|
self.attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0)
|
|
|
|
attn_output = self.dropout(self.attn)
|
|
attn_output = torch.matmul(attn_output, value)
|
|
|
|
attn_output = self.linear_out(
|
|
attn_output.transpose(1, 2)
|
|
.contiguous()
|
|
.view(batch_size, -1, self.num_heads * self.d_k)
|
|
)
|
|
|
|
return attn_output
|
|
|
|
def forward(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
pos_enc: torch.Tensor,
|
|
mask: torch.Tensor,
|
|
chunk_mask: Optional[torch.Tensor] = None,
|
|
left_context: int = 0,
|
|
) -> torch.Tensor:
|
|
"""Compute scaled dot product attention with rel. positional encoding.
|
|
Args:
|
|
query: Query tensor. (B, T_1, size)
|
|
key: Key tensor. (B, T_2, size)
|
|
value: Value tensor. (B, T_2, size)
|
|
pos_enc: Positional embedding tensor. (B, 2 * T_1 - 1, size)
|
|
mask: Source mask. (B, T_2)
|
|
chunk_mask: Chunk mask. (T_1, T_1)
|
|
left_context: Number of frames in left context.
|
|
Returns:
|
|
: Output tensor. (B, T_1, H * d_k)
|
|
"""
|
|
q, k, v = self.forward_qkv(query, key, value)
|
|
scores = self.compute_att_score(q, k, pos_enc, left_context=left_context)
|
|
return self.forward_attention(v, scores, mask, chunk_mask=chunk_mask)
|
|
|