FunASR/funasr/bin/inference.py

451 lines
15 KiB
Python

import os.path
import torch
import numpy as np
import hydra
import json
from omegaconf import DictConfig, OmegaConf, ListConfig
import logging
from funasr.download.download_from_hub import download_model
from funasr.train_utils.set_all_random_seed import set_all_random_seed
from funasr.utils.load_utils import load_bytes
from funasr.train_utils.device_funcs import to_device
from tqdm import tqdm
from funasr.train_utils.load_pretrained_model import load_pretrained_model
import time
import random
import string
from funasr.register import tables
from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
from funasr.utils.vad_utils import slice_padding_audio_samples
from funasr.utils.timestamp_tools import time_stamp_sentence
from funasr.download.file import download_from_url
def prepare_data_iterator(data_in, input_len=None, data_type=None, key=None):
"""
:param input:
:param input_len:
:param data_type:
:param frontend:
:return:
"""
data_list = []
key_list = []
filelist = [".scp", ".txt", ".json", ".jsonl"]
chars = string.ascii_letters + string.digits
if isinstance(data_in, str) and data_in.startswith('http'): # url
data_in = download_from_url(data_in)
if isinstance(data_in, str) and os.path.exists(data_in): # wav_path; filelist: wav.scp, file.jsonl;text.txt;
_, file_extension = os.path.splitext(data_in)
file_extension = file_extension.lower()
if file_extension in filelist: #filelist: wav.scp, file.jsonl;text.txt;
with open(data_in, encoding='utf-8') as fin:
for line in fin:
key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13))
if data_in.endswith(".jsonl"): #file.jsonl: json.dumps({"source": data})
lines = json.loads(line.strip())
data = lines["source"]
key = data["key"] if "key" in data else key
else: # filelist, wav.scp, text.txt: id \t data or data
lines = line.strip().split(maxsplit=1)
data = lines[1] if len(lines)>1 else lines[0]
key = lines[0] if len(lines)>1 else key
data_list.append(data)
key_list.append(key)
else:
key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13))
data_list = [data_in]
key_list = [key]
elif isinstance(data_in, (list, tuple)):
if data_type is not None and isinstance(data_type, (list, tuple)): # mutiple inputs
data_list_tmp = []
for data_in_i, data_type_i in zip(data_in, data_type):
key_list, data_list_i = prepare_data_iterator(data_in=data_in_i, data_type=data_type_i)
data_list_tmp.append(data_list_i)
data_list = []
for item in zip(*data_list_tmp):
data_list.append(item)
else:
# [audio sample point, fbank, text]
data_list = data_in
key_list = ["rand_key_" + ''.join(random.choice(chars) for _ in range(13)) for _ in range(len(data_in))]
else: # raw text; audio sample point, fbank; bytes
if isinstance(data_in, bytes): # audio bytes
data_in = load_bytes(data_in)
if key is None:
key = "rand_key_" + ''.join(random.choice(chars) for _ in range(13))
data_list = [data_in]
key_list = [key]
return key_list, data_list
@hydra.main(config_name=None, version_base=None)
def main_hydra(cfg: DictConfig):
def to_plain_list(cfg_item):
if isinstance(cfg_item, ListConfig):
return OmegaConf.to_container(cfg_item, resolve=True)
elif isinstance(cfg_item, DictConfig):
return {k: to_plain_list(v) for k, v in cfg_item.items()}
else:
return cfg_item
kwargs = to_plain_list(cfg)
log_level = getattr(logging, kwargs.get("log_level", "INFO").upper())
logging.basicConfig(level=log_level)
if kwargs.get("debug", False):
import pdb; pdb.set_trace()
model = AutoModel(**kwargs)
res = model(input=kwargs["input"])
print(res)
class AutoModel:
def __init__(self, **kwargs):
tables.print()
model, kwargs = self.build_model(**kwargs)
# if vad_model is not None, build vad model else None
vad_model = kwargs.get("vad_model", None)
vad_kwargs = kwargs.get("vad_model_revision", None)
if vad_model is not None:
print("build vad model")
vad_kwargs = {"model": vad_model, "model_revision": vad_kwargs}
vad_model, vad_kwargs = self.build_model(**vad_kwargs)
# if punc_model is not None, build punc model else None
punc_model = kwargs.get("punc_model", None)
punc_kwargs = kwargs.get("punc_model_revision", None)
if punc_model is not None:
punc_kwargs = {"model": punc_model, "model_revision": punc_kwargs}
punc_model, punc_kwargs = self.build_model(**punc_kwargs)
self.kwargs = kwargs
self.model = model
self.vad_model = vad_model
self.vad_kwargs = vad_kwargs
self.punc_model = punc_model
self.punc_kwargs = punc_kwargs
def build_model(self, **kwargs):
assert "model" in kwargs
if "model_conf" not in kwargs:
logging.info("download models from model hub: {}".format(kwargs.get("model_hub", "ms")))
kwargs = download_model(**kwargs)
set_all_random_seed(kwargs.get("seed", 0))
device = kwargs.get("device", "cuda")
if not torch.cuda.is_available() or kwargs.get("ngpu", 0):
device = "cpu"
# kwargs["batch_size"] = 1
kwargs["device"] = device
if kwargs.get("ncpu", None):
torch.set_num_threads(kwargs.get("ncpu"))
# build tokenizer
tokenizer = kwargs.get("tokenizer", None)
if tokenizer is not None:
tokenizer_class = tables.tokenizer_classes.get(tokenizer.lower())
tokenizer = tokenizer_class(**kwargs["tokenizer_conf"])
kwargs["tokenizer"] = tokenizer
kwargs["token_list"] = tokenizer.token_list
# build frontend
frontend = kwargs.get("frontend", None)
if frontend is not None:
frontend_class = tables.frontend_classes.get(frontend.lower())
frontend = frontend_class(**kwargs["frontend_conf"])
kwargs["frontend"] = frontend
kwargs["input_size"] = frontend.output_size()
# build model
model_class = tables.model_classes.get(kwargs["model"].lower())
model = model_class(**kwargs, **kwargs["model_conf"],
vocab_size=len(tokenizer.token_list) if tokenizer is not None else -1)
model.eval()
model.to(device)
# init_param
init_param = kwargs.get("init_param", None)
if init_param is not None:
logging.info(f"Loading pretrained params from {init_param}")
load_pretrained_model(
model=model,
init_param=init_param,
ignore_init_mismatch=kwargs.get("ignore_init_mismatch", False),
oss_bucket=kwargs.get("oss_bucket", None),
)
return model, kwargs
def __call__(self, input, input_len=None, **cfg):
if self.vad_model is None:
return self.generate(input, input_len=input_len, **cfg)
else:
return self.generate_with_vad(input, input_len=input_len, **cfg)
def generate(self, input, input_len=None, model=None, kwargs=None, key=None, **cfg):
# import pdb; pdb.set_trace()
kwargs = self.kwargs if kwargs is None else kwargs
kwargs.update(cfg)
model = self.model if model is None else model
batch_size = kwargs.get("batch_size", 1)
# if kwargs.get("device", "cpu") == "cpu":
# batch_size = 1
key_list, data_list = prepare_data_iterator(input, input_len=input_len, data_type=kwargs.get("data_type", None), key=key)
speed_stats = {}
asr_result_list = []
num_samples = len(data_list)
pbar = tqdm(colour="blue", total=num_samples+1, dynamic_ncols=True)
time_speech_total = 0.0
time_escape_total = 0.0
for beg_idx in range(0, num_samples, batch_size):
end_idx = min(num_samples, beg_idx + batch_size)
data_batch = data_list[beg_idx:end_idx]
key_batch = key_list[beg_idx:end_idx]
batch = {"data_in": data_batch, "key": key_batch}
if (end_idx - beg_idx) == 1 and isinstance(data_batch[0], torch.Tensor): # fbank
batch["data_in"] = data_batch[0]
batch["data_lengths"] = input_len
time1 = time.perf_counter()
with torch.no_grad():
results, meta_data = model.generate(**batch, **kwargs)
time2 = time.perf_counter()
asr_result_list.extend(results)
pbar.update(1)
# batch_data_time = time_per_frame_s * data_batch_i["speech_lengths"].sum().item()
batch_data_time = meta_data.get("batch_data_time", -1)
time_escape = time2 - time1
speed_stats["load_data"] = meta_data.get("load_data", 0.0)
speed_stats["extract_feat"] = meta_data.get("extract_feat", 0.0)
speed_stats["forward"] = f"{time_escape:0.3f}"
speed_stats["batch_size"] = f"{len(results)}"
speed_stats["rtf"] = f"{(time_escape) / batch_data_time:0.3f}"
description = (
f"{speed_stats}, "
)
pbar.set_description(description)
time_speech_total += batch_data_time
time_escape_total += time_escape
pbar.update(1)
pbar.set_description(f"rtf_avg: {time_escape_total/time_speech_total:0.3f}")
torch.cuda.empty_cache()
return asr_result_list
def generate_with_vad(self, input, input_len=None, **cfg):
# step.1: compute the vad model
model = self.vad_model
kwargs = self.vad_kwargs
kwargs.update(cfg)
beg_vad = time.time()
res = self.generate(input, input_len=input_len, model=model, kwargs=kwargs, **cfg)
end_vad = time.time()
print(f"time cost vad: {end_vad - beg_vad:0.3f}")
# step.2 compute asr model
model = self.model
kwargs = self.kwargs
kwargs.update(cfg)
batch_size = int(kwargs.get("batch_size_s", 300))*1000
batch_size_threshold_ms = int(kwargs.get("batch_size_threshold_s", 60))*1000
kwargs["batch_size"] = batch_size
key_list, data_list = prepare_data_iterator(input, input_len=input_len, data_type=kwargs.get("data_type", None))
results_ret_list = []
time_speech_total_all_samples = 0.0
beg_total = time.time()
pbar_total = tqdm(colour="red", total=len(res) + 1, dynamic_ncols=True)
for i in range(len(res)):
key = res[i]["key"]
vadsegments = res[i]["value"]
input_i = data_list[i]
speech = load_audio_text_image_video(input_i, fs=kwargs["frontend"].fs, audio_fs=kwargs.get("fs", 16000))
speech_lengths = len(speech)
n = len(vadsegments)
data_with_index = [(vadsegments[i], i) for i in range(n)]
sorted_data = sorted(data_with_index, key=lambda x: x[0][1] - x[0][0])
results_sorted = []
if not len(sorted_data):
logging.info("decoding, utt: {}, empty speech".format(key))
continue
# if kwargs["device"] == "cpu":
# batch_size = 0
if len(sorted_data) > 0 and len(sorted_data[0]) > 0:
batch_size = max(batch_size, sorted_data[0][0][1] - sorted_data[0][0][0])
batch_size_ms_cum = 0
beg_idx = 0
beg_asr_total = time.time()
time_speech_total_per_sample = speech_lengths/16000
time_speech_total_all_samples += time_speech_total_per_sample
for j, _ in enumerate(range(0, n)):
batch_size_ms_cum += (sorted_data[j][0][1] - sorted_data[j][0][0])
if j < n - 1 and (
batch_size_ms_cum + sorted_data[j + 1][0][1] - sorted_data[j + 1][0][0]) < batch_size and (
sorted_data[j + 1][0][1] - sorted_data[j + 1][0][0]) < batch_size_threshold_ms:
continue
batch_size_ms_cum = 0
end_idx = j + 1
speech_j, speech_lengths_j = slice_padding_audio_samples(speech, speech_lengths, sorted_data[beg_idx:end_idx])
beg_idx = end_idx
results = self.generate(speech_j, input_len=None, model=model, kwargs=kwargs, **cfg)
if len(results) < 1:
continue
results_sorted.extend(results)
pbar_total.update(1)
end_asr_total = time.time()
time_escape_total_per_sample = end_asr_total - beg_asr_total
pbar_total.set_description(f"rtf_avg_per_sample: {time_escape_total_per_sample / time_speech_total_per_sample:0.3f}, "
f"time_speech_total_per_sample: {time_speech_total_per_sample: 0.3f}, "
f"time_escape_total_per_sample: {time_escape_total_per_sample:0.3f}")
restored_data = [0] * n
for j in range(n):
index = sorted_data[j][1]
restored_data[index] = results_sorted[j]
result = {}
for j in range(n):
for k, v in restored_data[j].items():
if not k.startswith("timestamp"):
if k not in result:
result[k] = restored_data[j][k]
else:
result[k] += restored_data[j][k]
else:
result[k] = []
for t in restored_data[j][k]:
t[0] += vadsegments[j][0]
t[1] += vadsegments[j][0]
result[k] += restored_data[j][k]
result["key"] = key
results_ret_list.append(result)
pbar_total.update(1)
# step.3 compute punc model
model = self.punc_model
kwargs = self.punc_kwargs
kwargs.update(cfg)
for i, result in enumerate(results_ret_list):
beg_punc = time.time()
res = self.generate(result["text"], model=model, kwargs=kwargs, **cfg)
end_punc = time.time()
print(f"time punc: {end_punc - beg_punc:0.3f}")
# sentences = time_stamp_sentence(model.punc_list, model.sentence_end_id, results_ret_list[i]["timestamp"], res[i]["text"])
# results_ret_list[i]["time_stamp"] = res[0]["text_postprocessed_punc"]
# results_ret_list[i]["sentences"] = sentences
results_ret_list[i]["text_with_punc"] = res[i]["text"]
pbar_total.update(1)
end_total = time.time()
time_escape_total_all_samples = end_total - beg_total
pbar_total.set_description(f"rtf_avg_all_samples: {time_escape_total_all_samples / time_speech_total_all_samples:0.3f}, "
f"time_speech_total_all_samples: {time_speech_total_all_samples: 0.3f}, "
f"time_escape_total_all_samples: {time_escape_total_all_samples:0.3f}")
return results_ret_list
class AutoFrontend:
def __init__(self, **kwargs):
assert "model" in kwargs
if "model_conf" not in kwargs:
logging.info("download models from model hub: {}".format(kwargs.get("model_hub", "ms")))
kwargs = download_model(**kwargs)
# build frontend
frontend = kwargs.get("frontend", None)
if frontend is not None:
frontend_class = tables.frontend_classes.get(frontend.lower())
frontend = frontend_class(**kwargs["frontend_conf"])
self.frontend = frontend
if "frontend" in kwargs:
del kwargs["frontend"]
self.kwargs = kwargs
def __call__(self, input, input_len=None, kwargs=None, **cfg):
kwargs = self.kwargs if kwargs is None else kwargs
kwargs.update(cfg)
key_list, data_list = prepare_data_iterator(input, input_len=input_len)
batch_size = kwargs.get("batch_size", 1)
device = kwargs.get("device", "cpu")
if device == "cpu":
batch_size = 1
meta_data = {}
result_list = []
num_samples = len(data_list)
pbar = tqdm(colour="blue", total=num_samples + 1, dynamic_ncols=True)
time0 = time.perf_counter()
for beg_idx in range(0, num_samples, batch_size):
end_idx = min(num_samples, beg_idx + batch_size)
data_batch = data_list[beg_idx:end_idx]
key_batch = key_list[beg_idx:end_idx]
# extract fbank feats
time1 = time.perf_counter()
audio_sample_list = load_audio_text_image_video(data_batch, fs=self.frontend.fs, audio_fs=kwargs.get("fs", 16000))
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
speech, speech_lengths = extract_fbank(audio_sample_list, data_type=kwargs.get("data_type", "sound"),
frontend=self.frontend, **kwargs)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data["batch_data_time"] = speech_lengths.sum().item() * self.frontend.frame_shift * self.frontend.lfr_n / 1000
speech.to(device=device), speech_lengths.to(device=device)
batch = {"input": speech, "input_len": speech_lengths, "key": key_batch}
result_list.append(batch)
pbar.update(1)
description = (
f"{meta_data}, "
)
pbar.set_description(description)
time_end = time.perf_counter()
pbar.set_description(f"time escaped total: {time_end - time0:0.3f}")
return result_list
if __name__ == '__main__':
main_hydra()