FunASR/funasr/datasets/large_datasets/utils/tokenize.py
speech_asr 4e7a8283be update
2023-03-22 16:00:42 +08:00

74 lines
2.0 KiB
Python

#!/usr/bin/env python
import re
import numpy as np
def forward_segment(text, seg_dict):
word_list = []
i = 0
while i < len(text):
longest_word = text[i]
for j in range(i + 1, len(text) + 1):
word = text[i:j]
if word in seg_dict:
if len(word) > len(longest_word):
longest_word = word
word_list.append(longest_word)
i += len(longest_word)
return word_list
def seg_tokenize(txt, seg_dict):
out_txt = ""
for word in txt:
if word in seg_dict:
out_txt += seg_dict[word] + " "
else:
out_txt += "<unk>" + " "
return out_txt.strip().split()
def tokenize(data,
vocab=None,
seg_dict=None,
punc_dict=None,
bpe_tokenizer=None):
assert "text" in data
assert isinstance(vocab, dict)
text = data["text"]
token = []
vad = -2
if bpe_tokenizer is not None:
text = bpe_tokenizer.text2tokens("".join(text))
if seg_dict is not None:
assert isinstance(seg_dict, dict)
txt = forward_segment("".join(text).lower(), seg_dict)
text = seg_tokenize(txt, seg_dict)
length = len(text)
for i in range(length):
x = text[i]
if i == length-1 and "punc" in data and text[i].startswith("vad:"):
vad = x[-1][4:]
if len(vad) == 0:
vad = -1
else:
vad = int(vad)
elif x in vocab:
token.append(vocab[x])
else:
token.append(vocab['<unk>'])
if "punc" in data and punc_dict is not None:
punc_token = []
for punc in data["punc"]:
if punc in punc_dict:
punc_token.append(punc_dict[punc])
else:
punc_token.append(punc_dict["_"])
data["punc"] = np.array(punc_token)
data["text"] = np.array(token)
if vad is not -2:
data["vad_indexes"]=np.array([vad], dtype=np.int64)
return data