mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
74 lines
2.0 KiB
Python
74 lines
2.0 KiB
Python
#!/usr/bin/env python
|
|
import re
|
|
import numpy as np
|
|
|
|
def forward_segment(text, seg_dict):
|
|
word_list = []
|
|
i = 0
|
|
while i < len(text):
|
|
longest_word = text[i]
|
|
for j in range(i + 1, len(text) + 1):
|
|
word = text[i:j]
|
|
if word in seg_dict:
|
|
if len(word) > len(longest_word):
|
|
longest_word = word
|
|
word_list.append(longest_word)
|
|
i += len(longest_word)
|
|
return word_list
|
|
|
|
def seg_tokenize(txt, seg_dict):
|
|
out_txt = ""
|
|
for word in txt:
|
|
if word in seg_dict:
|
|
out_txt += seg_dict[word] + " "
|
|
else:
|
|
out_txt += "<unk>" + " "
|
|
return out_txt.strip().split()
|
|
|
|
def tokenize(data,
|
|
vocab=None,
|
|
seg_dict=None,
|
|
punc_dict=None,
|
|
bpe_tokenizer=None):
|
|
assert "text" in data
|
|
assert isinstance(vocab, dict)
|
|
text = data["text"]
|
|
token = []
|
|
vad = -2
|
|
|
|
if bpe_tokenizer is not None:
|
|
text = bpe_tokenizer.text2tokens("".join(text))
|
|
|
|
if seg_dict is not None:
|
|
assert isinstance(seg_dict, dict)
|
|
txt = forward_segment("".join(text).lower(), seg_dict)
|
|
text = seg_tokenize(txt, seg_dict)
|
|
|
|
length = len(text)
|
|
for i in range(length):
|
|
x = text[i]
|
|
if i == length-1 and "punc" in data and text[i].startswith("vad:"):
|
|
vad = x[-1][4:]
|
|
if len(vad) == 0:
|
|
vad = -1
|
|
else:
|
|
vad = int(vad)
|
|
elif x in vocab:
|
|
token.append(vocab[x])
|
|
else:
|
|
token.append(vocab['<unk>'])
|
|
|
|
if "punc" in data and punc_dict is not None:
|
|
punc_token = []
|
|
for punc in data["punc"]:
|
|
if punc in punc_dict:
|
|
punc_token.append(punc_dict[punc])
|
|
else:
|
|
punc_token.append(punc_dict["_"])
|
|
data["punc"] = np.array(punc_token)
|
|
|
|
data["text"] = np.array(token)
|
|
if vad is not -2:
|
|
data["vad_indexes"]=np.array([vad], dtype=np.int64)
|
|
return data
|