FunASR/funasr/utils/timestamp_tools.py
shixian.shi 0b06794fde bug fix
2023-03-13 20:14:41 +08:00

265 lines
10 KiB
Python

from scipy.fftpack import shift
import torch
import copy
import codecs
import logging
import edit_distance
import argparse
import numpy as np
from typing import Any, List, Tuple, Union
def ts_prediction_lfr6_standard(us_alphas,
us_peaks,
char_list,
vad_offset=0.0,
force_time_shift=-1.5
):
if not len(char_list):
return []
START_END_THRESHOLD = 5
MAX_TOKEN_DURATION = 12
TIME_RATE = 10.0 * 6 / 1000 / 3 # 3 times upsampled
if len(us_alphas.shape) == 2:
_, peaks = us_alphas[0], us_peaks[0] # support inference batch_size=1 only
else:
_, peaks = us_alphas, us_peaks
num_frames = peaks.shape[0]
if char_list[-1] == '</s>':
char_list = char_list[:-1]
timestamp_list = []
new_char_list = []
# for bicif model trained with large data, cif2 actually fires when a character starts
# so treat the frames between two peaks as the duration of the former token
fire_place = torch.where(peaks>1.0-1e-4)[0].cpu().numpy() + force_time_shift # total offset
num_peak = len(fire_place)
assert num_peak == len(char_list) + 1 # number of peaks is supposed to be number of tokens + 1
# begin silence
if fire_place[0] > START_END_THRESHOLD:
# char_list.insert(0, '<sil>')
timestamp_list.append([0.0, fire_place[0]*TIME_RATE])
new_char_list.append('<sil>')
# tokens timestamp
for i in range(len(fire_place)-1):
new_char_list.append(char_list[i])
if MAX_TOKEN_DURATION < 0 or fire_place[i+1] - fire_place[i] <= MAX_TOKEN_DURATION:
timestamp_list.append([fire_place[i]*TIME_RATE, fire_place[i+1]*TIME_RATE])
else:
# cut the duration to token and sil of the 0-weight frames last long
_split = fire_place[i] + MAX_TOKEN_DURATION
timestamp_list.append([fire_place[i]*TIME_RATE, _split*TIME_RATE])
timestamp_list.append([_split*TIME_RATE, fire_place[i+1]*TIME_RATE])
new_char_list.append('<sil>')
# tail token and end silence
# new_char_list.append(char_list[-1])
if num_frames - fire_place[-1] > START_END_THRESHOLD:
_end = (num_frames + fire_place[-1]) * 0.5
# _end = fire_place[-1]
timestamp_list[-1][1] = _end*TIME_RATE
timestamp_list.append([_end*TIME_RATE, num_frames*TIME_RATE])
new_char_list.append("<sil>")
else:
timestamp_list[-1][1] = num_frames*TIME_RATE
if vad_offset: # add offset time in model with vad
for i in range(len(timestamp_list)):
timestamp_list[i][0] = timestamp_list[i][0] + vad_offset / 1000.0
timestamp_list[i][1] = timestamp_list[i][1] + vad_offset / 1000.0
res_txt = ""
for char, timestamp in zip(new_char_list, timestamp_list):
res_txt += "{} {} {};".format(char, str(timestamp[0]+0.0005)[:5], str(timestamp[1]+0.0005)[:5])
res = []
for char, timestamp in zip(new_char_list, timestamp_list):
if char != '<sil>':
res.append([int(timestamp[0] * 1000), int(timestamp[1] * 1000)])
return res_txt, res
def time_stamp_sentence(punc_id_list, time_stamp_postprocessed, text_postprocessed):
res = []
if text_postprocessed is None:
return res
if time_stamp_postprocessed is None:
return res
if len(time_stamp_postprocessed) == 0:
return res
if len(text_postprocessed) == 0:
return res
if punc_id_list is None or len(punc_id_list) == 0:
res.append({
'text': text_postprocessed.split(),
"start": time_stamp_postprocessed[0][0],
"end": time_stamp_postprocessed[-1][1]
})
return res
if len(punc_id_list) != len(time_stamp_postprocessed):
res.append({
'text': text_postprocessed.split(),
"start": time_stamp_postprocessed[0][0],
"end": time_stamp_postprocessed[-1][1]
})
return res
sentence_text = ''
sentence_start = time_stamp_postprocessed[0][0]
texts = text_postprocessed.split()
for i in range(len(punc_id_list)):
sentence_text += texts[i]
if punc_id_list[i] == 2:
sentence_text += ','
res.append({
'text': sentence_text,
"start": sentence_start,
"end": time_stamp_postprocessed[i][1]
})
sentence_text = ''
sentence_start = time_stamp_postprocessed[i][1]
elif punc_id_list[i] == 3:
sentence_text += '.'
res.append({
'text': sentence_text,
"start": sentence_start,
"end": time_stamp_postprocessed[i][1]
})
sentence_text = ''
sentence_start = time_stamp_postprocessed[i][1]
return res
class AverageShiftCalculator():
def __init__(self):
logging.warning("Calculating average shift.")
def __call__(self, file1, file2):
uttid_list1, ts_dict1 = self.read_timestamps(file1)
uttid_list2, ts_dict2 = self.read_timestamps(file2)
uttid_intersection = self._intersection(uttid_list1, uttid_list2)
res = self.as_cal(uttid_intersection, ts_dict1, ts_dict2)
logging.warning("Average shift of {} and {}: {}.".format(file1, file2, str(res)[:8]))
logging.warning("Following timestamp pair differs most: {}, detail:{}".format(self.max_shift, self.max_shift_uttid))
def _intersection(self, list1, list2):
set1 = set(list1)
set2 = set(list2)
if set1 == set2:
logging.warning("Uttid same checked.")
return set1
itsc = list(set1 & set2)
logging.warning("Uttid differs: file1 {}, file2 {}, lines same {}.".format(len(list1), len(list2), len(itsc)))
return itsc
def read_timestamps(self, file):
# read timestamps file in standard format
uttid_list = []
ts_dict = {}
with codecs.open(file, 'r') as fin:
for line in fin.readlines():
text = ''
ts_list = []
line = line.rstrip()
uttid = line.split()[0]
uttid_list.append(uttid)
body = " ".join(line.split()[1:])
for pd in body.split(';'):
if not len(pd): continue
# pdb.set_trace()
char, start, end = pd.lstrip(" ").split(' ')
text += char + ','
ts_list.append((float(start), float(end)))
# ts_lists.append(ts_list)
ts_dict[uttid] = (text[:-1], ts_list)
logging.warning("File {} read done.".format(file))
return uttid_list, ts_dict
def _shift(self, filtered_timestamp_list1, filtered_timestamp_list2):
shift_time = 0
for fts1, fts2 in zip(filtered_timestamp_list1, filtered_timestamp_list2):
shift_time += abs(fts1[0] - fts2[0]) + abs(fts1[1] - fts2[1])
num_tokens = len(filtered_timestamp_list1)
return shift_time, num_tokens
def as_cal(self, uttid_list, ts_dict1, ts_dict2):
# calculate average shift between timestamp1 and timestamp2
# when characters differ, use edit distance alignment
# and calculate the error between the same characters
self._accumlated_shift = 0
self._accumlated_tokens = 0
self.max_shift = 0
self.max_shift_uttid = None
for uttid in uttid_list:
(t1, ts1) = ts_dict1[uttid]
(t2, ts2) = ts_dict2[uttid]
_align, _align2, _align3 = [], [], []
fts1, fts2 = [], []
_t1, _t2 = [], []
sm = edit_distance.SequenceMatcher(t1.split(','), t2.split(','))
s = sm.get_opcodes()
for j in range(len(s)):
if s[j][0] == "replace" or s[j][0] == "insert":
_align.append(0)
if s[j][0] == "replace" or s[j][0] == "delete":
_align3.append(0)
elif s[j][0] == "equal":
_align.append(1)
_align3.append(1)
else:
continue
# use s to index t2
for a, ts , t in zip(_align, ts2, t2.split(',')):
if a:
fts2.append(ts)
_t2.append(t)
sm2 = edit_distance.SequenceMatcher(t2.split(','), t1.split(','))
s = sm2.get_opcodes()
for j in range(len(s)):
if s[j][0] == "replace" or s[j][0] == "insert":
_align2.append(0)
elif s[j][0] == "equal":
_align2.append(1)
else:
continue
# use s2 tp index t1
for a, ts, t in zip(_align3, ts1, t1.split(',')):
if a:
fts1.append(ts)
_t1.append(t)
if len(fts1) == len(fts2):
shift_time, num_tokens = self._shift(fts1, fts2)
self._accumlated_shift += shift_time
self._accumlated_tokens += num_tokens
if shift_time/num_tokens > self.max_shift:
self.max_shift = shift_time/num_tokens
self.max_shift_uttid = uttid
else:
logging.warning("length mismatch")
return self._accumlated_shift / self._accumlated_tokens
SUPPORTED_MODES = ['cal_aas']
def main(args):
if args.mode == 'cal_aas':
asc = AverageShiftCalculator()
asc(args.input, args.input2)
else:
logging.error("Mode {} not in SUPPORTED_MODES: {}.".format(args.mode, SUPPORTED_MODES))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='timestamp tools')
parser.add_argument('--mode',
default=None,
type=str,
choices=SUPPORTED_MODES,
help='timestamp related toolbox')
parser.add_argument('--input', default=None, type=str, help='input file path')
parser.add_argument('--output', default=None, type=str, help='output file name')
parser.add_argument('--input2', default=None, type=str, help='input2 file path')
parser.add_argument('--kaldi-ts-type',
default='v2',
type=str,
choices=['v0', 'v1', 'v2'],
help='kaldi timestamp to write')
args = parser.parse_args()
main(args)