mirror of
https://github.com/modelscope/FunASR
synced 2025-09-15 14:48:36 +08:00
31 lines
1.1 KiB
Python
31 lines
1.1 KiB
Python
import torch
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
|
|
def slice_padding_fbank(speech, speech_lengths, vad_segments):
|
|
speech_list = []
|
|
speech_lengths_list = []
|
|
for i, segment in enumerate(vad_segments):
|
|
|
|
bed_idx = int(segment[0][0]*16)
|
|
end_idx = min(int(segment[0][1]*16), speech_lengths[0])
|
|
speech_i = speech[0, bed_idx: end_idx]
|
|
speech_lengths_i = end_idx-bed_idx
|
|
speech_list.append(speech_i)
|
|
speech_lengths_list.append(speech_lengths_i)
|
|
feats_pad = pad_sequence(speech_list, batch_first=True, padding_value=0.0)
|
|
speech_lengths_pad = torch.Tensor(speech_lengths_list).int()
|
|
return feats_pad, speech_lengths_pad
|
|
|
|
|
|
def slice_padding_audio_samples(speech, speech_lengths, vad_segments):
|
|
speech_list = []
|
|
speech_lengths_list = []
|
|
for i, segment in enumerate(vad_segments):
|
|
bed_idx = int(segment[0][0] * 16)
|
|
end_idx = min(int(segment[0][1] * 16), speech_lengths)
|
|
speech_i = speech[bed_idx: end_idx]
|
|
speech_lengths_i = end_idx - bed_idx
|
|
speech_list.append(speech_i)
|
|
speech_lengths_list.append(speech_lengths_i)
|
|
|
|
return speech_list, speech_lengths_list |