| .. | ||
| proto | ||
| .gitignore | ||
| grpc_client.py | ||
| grpc_main_client_mic.py | ||
| grpc_main_server.py | ||
| grpc_server.py | ||
| paraformer_onnx.py | ||
| paraformer_pb2_grpc.py | ||
| paraformer_pb2.py | ||
| Readme.md | ||
| utils | ||
Using paraformer with grpc
We can send streaming audio data to server in real-time with grpc client every 10 ms e.g., and get transcribed text when stop speaking. The audio data is in streaming, the asr inference process is in offline.
Steps
Step 1) Prepare server environment (on server).
Install modelscope and funasr with pip or with cuda-docker image.
Option 1: Install modelscope and funasr with pip
Option 2: or install with cuda-docker image as:
CID=`docker run --network host -d -it --gpus '"device=0"' registry.cn-hangzhou.aliyuncs.com/modelscope-repo/modelscope:ubuntu20.04-cuda11.3.0-py37-torch1.11.0-tf1.15.5-1.2.0`
echo $CID
docker exec -it $CID /bin/bash
Get funasr source code and get into grpc directory.
git clone https://github.com/alibaba-damo-academy/FunASR
cd FunASR/funasr/runtime/python/grpc/
Step 2) Optional, generate protobuf file (run on server, the two generated pb files are both used for server and client).
# Optional, Install dependency.
python -m pip install grpcio grpcio-tools
# paraformer_pb2.py and paraformer_pb2_grpc.py are already generated,
# regenerate it only when you make changes to ./proto/paraformer.proto file.
python -m grpc_tools.protoc --proto_path=./proto -I ./proto --python_out=. --grpc_python_out=./ ./proto/paraformer.proto
Step 3) Start grpc server (on server).
# Optional, Install dependency.
python -m pip install grpcio grpcio-tools
# Start server.
python grpc_main_server.py --port 10095
Step 4) Start grpc client (on client with microphone).
# Optional, Install dependency.
python -m pip install pyaudio webrtcvad grpcio grpcio-tools
# Start client.
python grpc_main_client_mic.py --host 127.0.0.1 --port 10095
Workflow in desgin
Reference
We borrow from or refer to some code as:
1)https://github.com/wenet-e2e/wenet/tree/main/runtime/core/grpc
2)https://github.com/Open-Speech-EkStep/inference_service/blob/main/realtime_inference_service.py
